cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060692 Number of parts if 3^n is partitioned into parts of size 2^n as far as possible and into parts of size 1^n.

Original entry on oeis.org

2, 3, 6, 6, 26, 36, 28, 186, 265, 738, 1105, 3186, 5269, 15516, 29728, 55761, 35228, 235278, 441475, 272526, 1861166, 3478866, 6231073, 1899171, 5672262, 50533341, 17325482, 186108951, 21328109, 63792576, 1264831925, 3794064336, 7086578554
Offset: 1

Views

Author

Labos Elemer, Apr 20 2001

Keywords

Comments

Corresponds to the only solution of the Diophantine equation 3^n = x*2^n + y*1^n with constraint 0 <= y < 2^n. (Since 3^n is odd, of course y cannot be zero.)

Examples

			3^4 = 81 = 16 + 16 + 16 + 16 + 16 + 1, so a(4) = 5 + 1 = 6;
3^5 = 243 = 32 + 32 + 32 + 32 + 32 + 32 + 32 + 19*1, so a(5) = 7 + 19 = 26.
		

Crossrefs

Programs

  • Haskell
    a060692 n = uncurry (+) $ divMod (3 ^ n) (2 ^ n)
    -- Reinhard Zumkeller, Jul 11 2014
  • Mathematica
    Table[3^n - (-1 + 2^n) Floor[(3/2)^n], {n, 33}] (* Fred Daniel Kline, Nov 01 2017 *)
    x[n_] := -(1/2) + (3/2)^n + ArcTan[Cot[(3/2)^n Pi]]/Pi;
    y[n_] := 3^n - 2^n * x[n]; yplusx[n_] := y[n] + x[n];
    Array[yplusx, 33] (* Fred Daniel Kline, Dec 21 2017 *)
    f[n_] := Floor[3^n/2^n] + PowerMod[3, n, 2^n]; Array[f, 33] (* Robert G. Wilson v, Dec 27 2017 *)
  • PARI
    a(n) = { my(d=divrem(3^n,2^n)); d[1]+d[2] }
    
  • PARI
    a(n) = { (3^n\2^n) + (3^n%2^n) } \\ Harry J. Smith, Jul 09 2009
    

Formula

a(n) = A002379(n) + A002380(n) = floor(3^n/2^n) + (3^n mod 2^n).
For n > 2, a(n) = 3^n mod (2^n-1). - Alex Ratushnyak, Jul 22 2012

Extensions

Edited by Klaus Brockhaus, May 24 2003