cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A064464 Binary order (cf. A029837) of the number of parts if 3^n is partitioned into parts of size 2^n as far as possible and into parts of size 1^n (cf. A060692).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 18, 19, 19, 21, 22, 23, 21, 23, 26, 25, 28, 25, 26, 31, 32, 33, 34, 35, 35, 37, 38, 39, 39, 40, 42, 43, 44, 44, 46, 47, 47, 47, 48, 50, 51, 51, 54, 54, 56, 56, 58, 59, 60, 60, 59, 63, 63, 63, 66, 65, 67, 69, 69, 70, 69
Offset: 1

Views

Author

Labos Elemer, Oct 03 2001; revised Mar 10 2002

Keywords

Comments

These binary orders are nearly equal to n.
For several values of n, a(n) = n holds, e.g., for n = 1, 2, 3, 5, 6, 8, 9, 10, 11,12.

Examples

			For n=12, 3^12 = 531441 = 129*2^12 + 3057*1^12; the binary order of 129 + 3057 = 3186 is ceiling(log_2(3186)) = 12, the exponent.
		

Crossrefs

Programs

  • PARI
    {for(n=1,72,d=divrem(3^n,2^n); print1(ceil(log(d[1]+d[2])/log(2)),","))}

Formula

a(n) = A029837(A060692(n)) = ceiling(log_2(A060692(n))).

Extensions

Edited by Klaus Brockhaus, May 24 2003

A002379 a(n) = floor(3^n / 2^n).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 17, 25, 38, 57, 86, 129, 194, 291, 437, 656, 985, 1477, 2216, 3325, 4987, 7481, 11222, 16834, 25251, 37876, 56815, 85222, 127834, 191751, 287626, 431439, 647159, 970739, 1456109, 2184164, 3276246, 4914369, 7371554, 11057332
Offset: 0

Views

Author

Keywords

Comments

It is an important unsolved problem related to Waring's problem to show that a(n) = floor((3^n-1)/(2^n-1)) holds for all n > 1. This has been checked for 10000 terms and is true for all sufficiently large n, by a theorem of Mahler. [Lichiardopol]
a(n) = floor((3^n-1)/(2^n-1)) holds true at least for 2 <= n <= 305000. - Hieronymus Fischer, Dec 31 2008
a(n) is also the curve length (rounded down) of the Sierpiński arrowhead curve after n iterations, let a(0) = 1. - Kival Ngaokrajang, May 21 2014
a(n) is composite infinitely often (Forman and Shapiro). More exactly, a(n) is divisible by at least one of 2, 5, 7 or 11 infinitely often (Dubickas and Novikas). - Tomohiro Yamada, Apr 15 2017

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046037, A070758, A070759, A067904 (Composites and Primes).
Cf. A064628 (an analog for 4/3).

Programs

Formula

a(n) = b(n) - (-2/3)^n where b(n) is defined by the recursion b(0):=2, b(1):=5/6, b(n+1):=(5/6)*b(n) + b(n-1). - Hieronymus Fischer, Dec 31 2008
a(n) = (1/2)*(b(n) + sqrt(b(n)^2 - (-4)^n)) (with b(n) as defined above). - Hieronymus Fischer, Dec 31 2008
3^n = a(n)*2^n + A002380(n). - R. J. Mathar, Oct 26 2012
a(n) = -(1/2) + (3/2)^n + arctan(cot((3/2)^n Pi)) / Pi. - Fred Daniel Kline, Apr 14 2018
a(n+1) = round( -(1/2) + (3^n-1)/(2^n-1) ). - Fred Daniel Kline, Apr 14 2018

Extensions

More terms from Robert G. Wilson v, May 11 2004

A002380 a(n) = 3^n reduced modulo 2^n.

Original entry on oeis.org

0, 1, 1, 3, 1, 19, 25, 11, 161, 227, 681, 1019, 3057, 5075, 15225, 29291, 55105, 34243, 233801, 439259, 269201, 1856179, 3471385, 6219851, 1882337, 5647011, 50495465, 17268667, 186023729, 21200275, 63600825, 1264544299, 3793632897, 7085931395
Offset: 0

Views

Author

Keywords

Comments

A065554 lists the indices n such that a(n+1) = 3*a(n). - Benoit Cloitre, Apr 21 2003
a(n) = (fractional part of (3/2)^n without the decimal point)/5^n = A204544(n) / 5^n. - Michel Lagneau, Jan 25 2012

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. k^n mod (k-1)^n: this sequence (k=3), A064629 (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), A138973 (k=8), A139733 (k=9).

Programs

  • Haskell
    a002380 n = 3^n `mod` 2^n  -- Reinhard Zumkeller, Jul 11 2014
  • Maple
    a:=n->3^n mod(2^n): seq(a(n), n=0..33); # Zerinvary Lajos, Feb 15 2008
  • Mathematica
    Table[ PowerMod[3, n, 2^n], {n, 0, 33}] (* Robert G. Wilson v, Dec 14 2006 *)
    Table[ 3^n - 2^n * Floor[ (3/2)^n ], {n,0,33} ] (* Fred Daniel Kline, Oct 12 2017 *)
    x[n_] := -(1/2) + (3/2)^n + ArcTan[Cot[(3/2)^n Pi]]/Pi;
    y[n_] := 3^n - 2^n * x[n];
    Array[y, 33] (* Fred Daniel Kline, Dec 21 2017 *)
  • PARI
    concat([0],vector(55,n,lift(Mod(3,2^n)^n))) \\ Joerg Arndt, Oct 14 2017
    

Extensions

More terms from Jason Earls, Jul 29 2001

A064628 a(n) = floor((4/3)^n).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 13, 17, 23, 31, 42, 56, 74, 99, 133, 177, 236, 315, 420, 560, 747, 996, 1328, 1771, 2362, 3149, 4199, 5599, 7466, 9954, 13273, 17697, 23596, 31462, 41950, 55933, 74577, 99437, 132583, 176777, 235703, 314271, 419028, 558704
Offset: 0

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

a(n) is the perimeter of a hexaflake (rounded down) after n iterations. The total number of holes = A000420(n) - 1. The total number of irregular polygon holes = A000420(n-1) - 1. The total number of triangle holes = 6*A000420(n-1). - Kival Ngaokrajang, Apr 18 2014
a(n) is composite infinitely often (Forman and Shapiro). More exactly, a(n) is divisible by at least one of 2, 3, 5 infinitely often (Dubickas and Novikas). - Tomohiro Yamada, Apr 15 2017

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.

Crossrefs

Cf. A046038, A070761, A070762, A067905 (Composites and Primes).

Programs

Extensions

More terms from Robert G. Wilson v, May 26 2004
OFFSET changed from 1 to 0 by Harry J. Smith, Sep 20 2009

A064629 a(n) = 4^n mod 3^n.

Original entry on oeis.org

0, 1, 7, 10, 13, 52, 451, 1075, 6487, 6265, 44743, 119923, 302545, 147298, 589192, 11922706, 33341917, 4227505, 146050183, 584200732, 1174541461, 4698165844, 18792663376, 43789593895, 175158375580, 700633502320, 1955245399837, 2737249942690, 18574597255747
Offset: 0

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

(a(n+1) - 4*a(n))/3^n is always one of -3, -2, -1, 0, 1, 2. - Robert Israel, Dec 01 2016

Crossrefs

Cf. k^n mod (k-1)^n: A002380 (k=3), this sequence (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), A138973 (k=8), A139733 (k=9).

Programs

Extensions

a(26) from Harry J. Smith, Sep 20 2009

A064630 Number of parts if 4^n is partitioned into parts of size 3^n as far as possible into parts of size 2^n as far as possible and into parts of size 1^n.

Original entry on oeis.org

2, 5, 5, 16, 25, 15, 66, 121, 146, 771, 1220, 3641, 8093, 15843, 28359, 50236, 33366, 36709, 145250, 137776, 548024, 2186496, 1066102, 4251976, 16984368, 28678103, 13620614, 205950171, 100716646, 381399635, 1397934923, 3826001641
Offset: 1

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

Corresponds to the only solution of the Diophantine equation 4^n = x*3^n + y*2^n + z*1^n with constraints 0 <= y < 3^n/2^n, 0 <= z < 2^n.
Binary order (cf. A029837) of a(n) is close to n.

Examples

			4^6 = 4096 = 729 + 729 + 729 + 729 + 729 + 64 + 64 + 64 + 64 + 64 + 64 + 64 + 1 + 1 + 1 = 5*3^6 + 7*2^6 + 3*1^6, so a(6) = 5 + 7 + 3 = 15.
		

Crossrefs

Programs

  • PARI
    {for(n=1,32,a=divrem(4^n,3^n); b=divrem(a[2],2^n); print1(a[1]+b[1]+b[2],","))}
    
  • PARI
    { f=t=w=1; for (n=1, 250, f*=4; t*=3; w*=2; a=divrem(f, t); b=divrem(a[2], w); write("b064630.txt", n, " ", a[1]+b[1]+b[2]) ) } \\ Harry J. Smith, Sep 20 2009

Formula

a(n) = A064628(n) + floor(A064629(n)/2^n) + (A064629(n) mod 2^n) = floor(4^n/3^n) + floor((4^n mod 3^n)/2^n) + ((4^n mod 3^n) mod 2^n)

Extensions

Edited by Klaus Brockhaus, May 24 2003

A064536 a(n) = (4^n mod 3^n) mod 2^n.

Original entry on oeis.org

1, 3, 2, 13, 20, 3, 51, 87, 121, 711, 1139, 3537, 8034, 15752, 27922, 49629, 33201, 35975, 143900, 136341, 545364, 2181456, 1060135, 4240540, 16962160, 28647197, 13597858, 205877827, 100616667, 381266393, 1397863922, 3825576990, 8216376565, 14181633879, 22366797148
Offset: 1

Views

Author

Labos Elemer, Oct 08 2001

Keywords

Comments

A generalization of A002380. It arises also as a coefficient (=c1) of 1^n=1 in a special (greedy) decomposition of 4^n into like powers as follows: 4^n = c3*3^n + c2*2^n + c1*1^n.

Crossrefs

Programs

  • Mathematica
    Table[Mod[PowerMod[4,n,3^n],2^n],{n,40}] (* Harvey P. Dale, Apr 09 2013 *)
  • PARI
    a(n) = { (4^n % 3^n) % 2^n } \\ Harry J. Smith, Sep 17 2009

Formula

n = 7: 4^7 = 16384 = 7*2187 + 8*128 + 51*1 where a(7)=51, the last coefficient; A064630(7) = 7 + 8 + a(7) = 66.

A064631 a(n) = ceiling(log_2(A064630(n))).

Original entry on oeis.org

2, 3, 3, 5, 5, 4, 7, 7, 8, 10, 11, 12, 13, 14, 15, 16, 16, 16, 18, 18, 20, 22, 21, 23, 25, 25, 24, 28, 27, 29, 31, 32, 33, 34, 35, 36, 37, 37, 39, 40, 39, 42, 42, 44, 44, 46, 46, 46, 49, 50, 51, 51, 51, 54, 55, 55, 57, 57, 59, 60, 60, 61, 63, 64, 64, 66, 60, 62, 67, 70, 69, 72
Offset: 1

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

In A064630, using a greedy algorithm we write 4^n = x*3^n+y*2^n+z*1^n and A064630(n) = x+y+z. This sequence is a measure of the "length" or complexity of those solutions.

Crossrefs

Formula

a(n) = A029837(A064630(n)) = ceiling(log_2(A064630(n))).

Extensions

Initial terms corrected and entry revised by Sean A. Irvine, Jul 18 2023

A064855 a(n) = (((6^n mod 5^n) mod 4^n) mod 3^n) mod 2^n.

Original entry on oeis.org

1, 2, 0, 14, 16, 10, 66, 21, 321, 917, 2037, 1550, 2420, 15152, 27439, 46731, 110953, 137148, 336949, 703202, 805647, 181132, 5835407, 3343039, 21816283, 18528238, 95129681, 241918238, 311938330, 48698222, 1539688558, 3481498150, 8104918325, 13512884439, 22365723609
Offset: 1

Views

Author

Labos Elemer, Oct 08 2001

Keywords

Comments

A generalization of A002380, A064536 and A064854. It arises also as a coefficient (=c1) of 1^n=1 in a special (greedy) decomposition of 6^n into like powers as follows: 6^n = c5*5^n + c4*4^n + c3*3^n + c2*2^n + c1*1^n.

Crossrefs

Programs

  • Mathematica
    Table[Fold[Mod,6^n,Range[5,2,-1]^n],{n,40}]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    a(n) = { (((6^n%5^n)%4^n)%3^n)%2^n } \\ Harry J. Smith, Sep 28 2009

Formula

n = 8: 6^8 = 1679616 = 4*390625 + 1*65536 + 7*6561 + 22*256 + 21*1 where a(8)=21, the last coefficient and here 6^8 is decomposed into 4 + 1 + 7 + 22 + 21 = 55 like (8th) powers.

A064854 a(n) = ((5^n mod 4^n) mod 3^n) mod 2^n.

Original entry on oeis.org

1, 0, 7, 0, 21, 37, 118, 56, 19, 428, 808, 3920, 2256, 15240, 28312, 46733, 128931, 251439, 434788, 645833, 1397733, 1179155, 7185704, 1551886, 33308648, 65879944, 121274199, 65829274, 228529703, 248939750, 799831532, 2835988891, 1358930753, 9419331043, 9093076436
Offset: 1

Views

Author

Labos Elemer, Oct 08 2001

Keywords

Comments

A generalization of A002380 and A064536. It arises also as a coefficient (=c1) of 1^n=1 in a special (greedy) decomposition of 5^n into like powers as follows: 5^n = c4*4^n + c3*3^n + c2*2^n + c1*1^n.

Crossrefs

Programs

Formula

n = 7: 5^7 = 78125 = 4*16384 + 5*2187 + 12*128 + 118*1, where a(7)=118, the last coefficient.
Showing 1-10 of 11 results. Next