cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A002379 a(n) = floor(3^n / 2^n).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 17, 25, 38, 57, 86, 129, 194, 291, 437, 656, 985, 1477, 2216, 3325, 4987, 7481, 11222, 16834, 25251, 37876, 56815, 85222, 127834, 191751, 287626, 431439, 647159, 970739, 1456109, 2184164, 3276246, 4914369, 7371554, 11057332
Offset: 0

Views

Author

Keywords

Comments

It is an important unsolved problem related to Waring's problem to show that a(n) = floor((3^n-1)/(2^n-1)) holds for all n > 1. This has been checked for 10000 terms and is true for all sufficiently large n, by a theorem of Mahler. [Lichiardopol]
a(n) = floor((3^n-1)/(2^n-1)) holds true at least for 2 <= n <= 305000. - Hieronymus Fischer, Dec 31 2008
a(n) is also the curve length (rounded down) of the Sierpiński arrowhead curve after n iterations, let a(0) = 1. - Kival Ngaokrajang, May 21 2014
a(n) is composite infinitely often (Forman and Shapiro). More exactly, a(n) is divisible by at least one of 2, 5, 7 or 11 infinitely often (Dubickas and Novikas). - Tomohiro Yamada, Apr 15 2017

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046037, A070758, A070759, A067904 (Composites and Primes).
Cf. A064628 (an analog for 4/3).

Programs

Formula

a(n) = b(n) - (-2/3)^n where b(n) is defined by the recursion b(0):=2, b(1):=5/6, b(n+1):=(5/6)*b(n) + b(n-1). - Hieronymus Fischer, Dec 31 2008
a(n) = (1/2)*(b(n) + sqrt(b(n)^2 - (-4)^n)) (with b(n) as defined above). - Hieronymus Fischer, Dec 31 2008
3^n = a(n)*2^n + A002380(n). - R. J. Mathar, Oct 26 2012
a(n) = -(1/2) + (3/2)^n + arctan(cot((3/2)^n Pi)) / Pi. - Fred Daniel Kline, Apr 14 2018
a(n+1) = round( -(1/2) + (3^n-1)/(2^n-1) ). - Fred Daniel Kline, Apr 14 2018

Extensions

More terms from Robert G. Wilson v, May 11 2004

A154130 Exponents m with decreasing fractional part of (4/3)^m.

Original entry on oeis.org

1, 4, 13, 17, 128, 485, 692, 1738, 12863, 77042, 109705, 289047, 720429, 4475944, 75629223, 182575231
Offset: 1

Views

Author

Hieronymus Fischer, Jan 11 2009

Keywords

Comments

The next term is greater than 3*10^8.

Examples

			a(3)=13, since fract((4/3)^13)=0.0923.., but fract((4/3)^k)>=0.16... for 1<=k<=12; thus fract((4/3)^13)<fract((4/3)^k) for 1<=k<13.
		

Crossrefs

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((4/3)^m) < fract((4/3)^a(k-1))}, where fract(x) = x-floor(x).

Extensions

Extended by Charles R Greathouse IV, Nov 03 2009
a(15)-a(16) from Robert Gerbicz, Nov 21 2010

A064629 a(n) = 4^n mod 3^n.

Original entry on oeis.org

0, 1, 7, 10, 13, 52, 451, 1075, 6487, 6265, 44743, 119923, 302545, 147298, 589192, 11922706, 33341917, 4227505, 146050183, 584200732, 1174541461, 4698165844, 18792663376, 43789593895, 175158375580, 700633502320, 1955245399837, 2737249942690, 18574597255747
Offset: 0

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

(a(n+1) - 4*a(n))/3^n is always one of -3, -2, -1, 0, 1, 2. - Robert Israel, Dec 01 2016

Crossrefs

Cf. k^n mod (k-1)^n: A002380 (k=3), this sequence (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), A138973 (k=8), A139733 (k=9).

Programs

Extensions

a(26) from Harry J. Smith, Sep 20 2009

A064630 Number of parts if 4^n is partitioned into parts of size 3^n as far as possible into parts of size 2^n as far as possible and into parts of size 1^n.

Original entry on oeis.org

2, 5, 5, 16, 25, 15, 66, 121, 146, 771, 1220, 3641, 8093, 15843, 28359, 50236, 33366, 36709, 145250, 137776, 548024, 2186496, 1066102, 4251976, 16984368, 28678103, 13620614, 205950171, 100716646, 381399635, 1397934923, 3826001641
Offset: 1

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

Corresponds to the only solution of the Diophantine equation 4^n = x*3^n + y*2^n + z*1^n with constraints 0 <= y < 3^n/2^n, 0 <= z < 2^n.
Binary order (cf. A029837) of a(n) is close to n.

Examples

			4^6 = 4096 = 729 + 729 + 729 + 729 + 729 + 64 + 64 + 64 + 64 + 64 + 64 + 64 + 1 + 1 + 1 = 5*3^6 + 7*2^6 + 3*1^6, so a(6) = 5 + 7 + 3 = 15.
		

Crossrefs

Programs

  • PARI
    {for(n=1,32,a=divrem(4^n,3^n); b=divrem(a[2],2^n); print1(a[1]+b[1]+b[2],","))}
    
  • PARI
    { f=t=w=1; for (n=1, 250, f*=4; t*=3; w*=2; a=divrem(f, t); b=divrem(a[2], w); write("b064630.txt", n, " ", a[1]+b[1]+b[2]) ) } \\ Harry J. Smith, Sep 20 2009

Formula

a(n) = A064628(n) + floor(A064629(n)/2^n) + (A064629(n) mod 2^n) = floor(4^n/3^n) + floor((4^n mod 3^n)/2^n) + ((4^n mod 3^n) mod 2^n)

Extensions

Edited by Klaus Brockhaus, May 24 2003

A065564 Numbers k such that floor((4/3)^(k+1))/floor((4/3)^k) = 4/3.

Original entry on oeis.org

4, 13, 18, 20, 21, 23, 24, 34, 44, 45, 49, 56, 60, 63, 65, 66, 67, 79, 81, 83, 85, 88, 94, 102, 107, 109, 119, 125, 126, 129, 131, 132, 133, 135, 138, 139, 144, 161, 162, 164, 172, 174, 175, 190, 194, 199, 204, 217, 218, 233, 234, 240, 249, 250, 253, 255, 258
Offset: 1

Views

Author

Benoit Cloitre, Nov 30 2001

Keywords

Crossrefs

Programs

  • PARI
    isok(k) = { my(f=4/3); floor(f^(k + 1))/floor(f^k) == f } \\ Harry J. Smith, Oct 22 2009

Formula

Lim_{n->infinity} a(n)/n = 4?

Extensions

a(55)-a(57) corrected by Harry J. Smith, Oct 22 2009

A065565 a(n) = floor((5/4)^n).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 5, 7, 9, 11, 14, 18, 22, 28, 35, 44, 55, 69, 86, 108, 135, 169, 211, 264, 330, 413, 516, 646, 807, 1009, 1262, 1577, 1972, 2465, 3081, 3851, 4814, 6018, 7523, 9403, 11754, 14693, 18367, 22958, 28698, 35873, 44841, 56051, 70064, 87581
Offset: 0

Views

Author

Benoit Cloitre, Nov 30 2001

Keywords

Comments

a(n) is also the curvature (rounded down) of the circle inscribed in the n-th 3:4:5 triangle arranged in a spiral as shown in the illustration in the links section. - Kival Ngaokrajang, Aug 21 2013
By the result of Dubickas and Novikas, a(n) is divisible by at least one of 2, 3, 7, 11, 13 infinitely often, so that a(n) is composite infinitely often. - Tomohiro Yamada, Apr 23 2017

Crossrefs

Cf. A064628. - Tomohiro Yamada, Apr 23 2017

Programs

Extensions

Edited by N. J. A. Sloane at the suggestion of Stefan Steinerberger, Jun 20 2007
Offset changed from 1 to 0 by Harry J. Smith, Oct 22 2009

A240916 a(n) = 6*a(n-1) + 2*2^(n-1) - 2 for n > 2, a(0) = a(1) = 0, a(2) = 3.

Original entry on oeis.org

0, 0, 3, 24, 158, 978, 5930, 35706, 214490, 1287450, 7725722, 46356378, 278142362, 1668862362, 10013190554, 60079176090, 360475122074, 2162850863514, 12977105443226, 77862633183642, 467175800150426, 2803054802999706, 16818328822192538
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 14 2014

Keywords

Comments

a(n) is the total number of holes of a triflake-like fractal (Mitsubishi logo) after n iterations. The scale factor for this case is 1/3, but for the actual triflake case, it is 1/2, i.e., Sierpiński triangle. The total number of sides is 3*A000302(n). The perimeter (rounded down) is A064628(n).

Crossrefs

Cf. A000302, A064628, A240523 (pentaflake), A240671 (heptaflake), A240572 (octaflake), A240733 (nonaflake), A240734 (decaflake), A240840 (hendecaflake), A240735 (dodecaflake), A240841 (tridecaflake).

Programs

  • Mathematica
    Join[{0,0},LinearRecurrence[{9,-20,12},{3,24,158},30]] (* Harvey P. Dale, Jan 31 2015 *)
  • PARI
    {a(n)=if(n<=0, 0, if(n<2, 0, if(n<3, 3, 6*a(n-1)+2*2^(n-1)-2)))}
      for(n=0,100,print1(a(n),", "))
    
  • PARI
    concat([0,0], Vec(-x^2*(2*x^2-3*x+3)/((x-1)*(2*x-1)*(6*x-1)) + O(x^100))) \\ Colin Barker, Apr 15 2014

Formula

From Colin Barker, Apr 15 2014: (Start)
a(n) = (72-45*2^(1+n)+23*6^n)/180 for n>1.
a(n) = 9*a(n-1)-20*a(n-2)+12*a(n-3) for n>4.
G.f.: -x^2*(2*x^2-3*x+3) / ((x-1)*(2*x-1)*(6*x-1)). (End).

A064536 a(n) = (4^n mod 3^n) mod 2^n.

Original entry on oeis.org

1, 3, 2, 13, 20, 3, 51, 87, 121, 711, 1139, 3537, 8034, 15752, 27922, 49629, 33201, 35975, 143900, 136341, 545364, 2181456, 1060135, 4240540, 16962160, 28647197, 13597858, 205877827, 100616667, 381266393, 1397863922, 3825576990, 8216376565, 14181633879, 22366797148
Offset: 1

Views

Author

Labos Elemer, Oct 08 2001

Keywords

Comments

A generalization of A002380. It arises also as a coefficient (=c1) of 1^n=1 in a special (greedy) decomposition of 4^n into like powers as follows: 4^n = c3*3^n + c2*2^n + c1*1^n.

Crossrefs

Programs

  • Mathematica
    Table[Mod[PowerMod[4,n,3^n],2^n],{n,40}] (* Harvey P. Dale, Apr 09 2013 *)
  • PARI
    a(n) = { (4^n % 3^n) % 2^n } \\ Harry J. Smith, Sep 17 2009

Formula

n = 7: 4^7 = 16384 = 7*2187 + 8*128 + 51*1 where a(7)=51, the last coefficient; A064630(7) = 7 + 8 + a(7) = 66.

A064631 a(n) = ceiling(log_2(A064630(n))).

Original entry on oeis.org

2, 3, 3, 5, 5, 4, 7, 7, 8, 10, 11, 12, 13, 14, 15, 16, 16, 16, 18, 18, 20, 22, 21, 23, 25, 25, 24, 28, 27, 29, 31, 32, 33, 34, 35, 36, 37, 37, 39, 40, 39, 42, 42, 44, 44, 46, 46, 46, 49, 50, 51, 51, 51, 54, 55, 55, 57, 57, 59, 60, 60, 61, 63, 64, 64, 66, 60, 62, 67, 70, 69, 72
Offset: 1

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

In A064630, using a greedy algorithm we write 4^n = x*3^n+y*2^n+z*1^n and A064630(n) = x+y+z. This sequence is a measure of the "length" or complexity of those solutions.

Crossrefs

Formula

a(n) = A029837(A064630(n)) = ceiling(log_2(A064630(n))).

Extensions

Initial terms corrected and entry revised by Sean A. Irvine, Jul 18 2023

A064855 a(n) = (((6^n mod 5^n) mod 4^n) mod 3^n) mod 2^n.

Original entry on oeis.org

1, 2, 0, 14, 16, 10, 66, 21, 321, 917, 2037, 1550, 2420, 15152, 27439, 46731, 110953, 137148, 336949, 703202, 805647, 181132, 5835407, 3343039, 21816283, 18528238, 95129681, 241918238, 311938330, 48698222, 1539688558, 3481498150, 8104918325, 13512884439, 22365723609
Offset: 1

Views

Author

Labos Elemer, Oct 08 2001

Keywords

Comments

A generalization of A002380, A064536 and A064854. It arises also as a coefficient (=c1) of 1^n=1 in a special (greedy) decomposition of 6^n into like powers as follows: 6^n = c5*5^n + c4*4^n + c3*3^n + c2*2^n + c1*1^n.

Crossrefs

Programs

  • Mathematica
    Table[Fold[Mod,6^n,Range[5,2,-1]^n],{n,40}]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    a(n) = { (((6^n%5^n)%4^n)%3^n)%2^n } \\ Harry J. Smith, Sep 28 2009

Formula

n = 8: 6^8 = 1679616 = 4*390625 + 1*65536 + 7*6561 + 22*256 + 21*1 where a(8)=21, the last coefficient and here 6^8 is decomposed into 4 + 1 + 7 + 22 + 21 = 55 like (8th) powers.
Showing 1-10 of 20 results. Next