cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 90 results. Next

A073632 Numbers k such that floor((3/2)^k) = A002379(k) is odd.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 17, 18, 20, 21, 22, 25, 27, 30, 32, 33, 34, 35, 38, 42, 45, 46, 48, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 69, 71, 74, 76, 82, 83, 85, 89, 90, 93, 96, 97, 98, 100, 104, 106, 107, 109, 110, 112, 113, 114, 116, 117, 118, 119, 120
Offset: 1

Views

Author

Benoit Cloitre, Aug 29 2002

Keywords

Crossrefs

Cf. A002379, A073633, A073634 (complement).

Programs

  • Mathematica
    Select[Range[0, 120], OddQ[Floor[(3/2)^#]] &] (* Jayanta Basu, Jul 03 2013 *)
  • PARI
    isok(k) = floor((3/2)^k) % 2; \\ Michel Marcus, May 19 2022

Extensions

a(1) = 0 inserted by Amiram Eldar, May 19 2022

A073633 Numbers k that divide floor((3/2)^k) = A002379(k).

Original entry on oeis.org

1, 2, 3, 16, 43, 50, 56, 193, 283, 961, 970, 4958, 9439, 10493, 11375, 18552, 57051, 81602, 617287, 917186, 1525995, 5107085, 9162821, 22008620
Offset: 1

Views

Author

Benoit Cloitre, Aug 29 2002

Keywords

Comments

No more terms through 10^6. - Ryan Propper, May 05 2006
The first 8 terms are all in A032863, all known subsequent terms, i.e., at least up to a(21), are not in A032863. - M. F. Hasler, Oct 05 2018

Crossrefs

Programs

  • Mathematica
    t = 1; Do[t = 3t/2; If[ Mod[ Floor[t], n] == 0, Print[n]], {n, 500000}] (* Robert G. Wilson v, Apr 06 2006 *)
  • PARI
    a=1;for(n=1,10^6,a*=3;b=shift(a,-n);if(b%n==0,print1(n,","))) \\ Robert Gerbicz, Aug 23 2006
    
  • PARI
    P=1;for(n=1,oo,(P*=3)>>n%n||print1(n",")) \\ M. F. Hasler, Oct 05 2018
    
  • Python
    from gmpy2 import mpz, t_div_2exp, t_mod
    A073633_list, m = [], mpz(1)
    for n in range(1,10**9):
        m *= 3
        if t_mod(t_div_2exp(m,n),n) == 0:
            A073633_list.append(n) # Chai Wah Wu, Mar 30 2020

Extensions

More terms from Michel ten Voorde Jun 20 2003
2 more terms from Ryan Propper, May 05 2006
More terms from Robert Gerbicz, Aug 23 2006
a(22)-a(24) from Chai Wah Wu, Mar 30 2020

A073634 Numbers k such that floor((3/2)^k) = A002379(k) is even.

Original entry on oeis.org

2, 9, 11, 13, 16, 19, 23, 24, 26, 28, 29, 31, 36, 37, 39, 40, 41, 43, 44, 47, 49, 50, 51, 54, 56, 60, 66, 67, 68, 70, 72, 73, 75, 77, 78, 79, 80, 81, 84, 86, 87, 88, 91, 92, 94, 95, 99, 101, 102, 103, 105, 108, 111, 115, 121, 123, 126, 127, 132, 134, 135, 136, 138
Offset: 1

Views

Author

Benoit Cloitre, Aug 29 2002

Keywords

Crossrefs

Cf. A002379, A073632 (complement), A073633.

Programs

  • Mathematica
    Select[Range[0, 150], EvenQ[Floor[(3/2)^#]] &] (* Amiram Eldar, May 19 2022 *)

Extensions

Wrong term (0) removed by Amiram Eldar, May 19 2022

A083198 a(n) = A061419(n) - A002379(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 11, 16, 24, 36, 54, 80, 121, 181, 271, 407, 610, 915, 1372, 2058, 3088, 4631, 6947, 10420, 15630, 23446, 35169, 52753, 79129, 118693, 178039, 267059, 400589, 600883, 901324, 1351986, 2027979, 3041968
Offset: 5

Views

Author

Ralf Stephan, Jun 01 2003

Keywords

Comments

lim (a(n) * (2/3)^n) = 2/3 * A083286 - 1.

Programs

  • PARI
    p=1; for(n=2, 100, p=p+ceil(p/2); print1(p-floor((3/2)^n)", "))

A154130 Exponents m with decreasing fractional part of (4/3)^m.

Original entry on oeis.org

1, 4, 13, 17, 128, 485, 692, 1738, 12863, 77042, 109705, 289047, 720429, 4475944, 75629223, 182575231
Offset: 1

Views

Author

Hieronymus Fischer, Jan 11 2009

Keywords

Comments

The next term is greater than 3*10^8.

Examples

			a(3)=13, since fract((4/3)^13)=0.0923.., but fract((4/3)^k)>=0.16... for 1<=k<=12; thus fract((4/3)^13)<fract((4/3)^k) for 1<=k<13.
		

Crossrefs

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((4/3)^m) < fract((4/3)^a(k-1))}, where fract(x) = x-floor(x).

Extensions

Extended by Charles R Greathouse IV, Nov 03 2009
a(15)-a(16) from Robert Gerbicz, Nov 21 2010

A094969 a(n) = floor(5^n/2^n).

Original entry on oeis.org

1, 2, 6, 15, 39, 97, 244, 610, 1525, 3814, 9536, 23841, 59604, 149011, 372529, 931322, 2328306, 5820766, 14551915, 36379788, 90949470, 227373675, 568434188, 1421085471, 3552713678, 8881784197, 22204460492, 55511151231, 138777878078, 346944695195, 867361737988
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

A061419 a(n) = ceiling(a(n-1)*3/2) with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 27, 41, 62, 93, 140, 210, 315, 473, 710, 1065, 1598, 2397, 3596, 5394, 8091, 12137, 18206, 27309, 40964, 61446, 92169, 138254, 207381, 311072, 466608, 699912, 1049868, 1574802, 2362203, 3543305, 5314958, 7972437, 11958656
Offset: 1

Views

Author

Henry Bottomley, May 02 2001

Keywords

Comments

It appears that this sequence is the (L)-sieve transform of {3,6,9,12,...,3n,...} = A008585. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 06 2009

Examples

			a(6) = ceiling(8*3/2) = 12.
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.30.1, p. 196.

Crossrefs

First differences are in A073941.

Programs

  • Magma
    [ n eq 1 select 1 else Ceiling(Self(n-1)*3/2): n in [1..40] ]; // Klaus Brockhaus, Nov 14 2008
    
  • Maple
    a:=proc(n) option remember: if n=1 then 1 else ceil(procname(n-1)*3/2) fi; end; seq(a(n),n=1..40); # Muniru A Asiru, Jun 07 2018
  • Mathematica
    a=1;a=Table[a=Ceiling[a*3/2],{n,0,4!}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    NestList[Ceiling[3#/2]&,1,39] (* Stefano Spezia, Dec 08 2024 *)
  • PARI
    { a=2/3; for (n=1, 500, write("b061419.txt", n, " ", a=ceil(a*3/2)) ) } \\ Harry J. Smith, Jul 22 2009
    
  • Python
    from itertools import islice
    def A061419_gen(): # generator of terms
        a = 2
        while True:
            yield a-1
            a += a>>1
    A061419_list = list(islice(A061419_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n) = A061418(n) - 1 = floor(K*(3/2)^n) where K = 1.08151366859...
The constant K is (2/3)*K(3) (see A083286). - Ralf Stephan, May 29 2003
a(1) = 1, a(n) = A070885(n)/3. - Benoit Cloitre, Aug 18 2002
a(n) = ceiling((a(n-1) + a(n-2))*9/10) - Franklin T. Adams-Watters, May 01 2006

A094999 a(n) = floor(12^n/11^n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 25, 27, 29, 32, 35, 38, 42, 45, 50, 54, 59, 65, 71, 77, 84, 92, 100, 109, 119, 130, 142, 155, 169, 185, 201, 220, 240, 262, 285, 311, 340, 371, 404, 441, 481
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

Formula

It appears that a(n) = floor(2^(n/8)). - Yakov Shusterman (yakov(AT)mobli.com), Dec 07 2008

A061418 a(n) = floor(a(n-1)*3/2) with a(1) = 2.

Original entry on oeis.org

2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 94, 141, 211, 316, 474, 711, 1066, 1599, 2398, 3597, 5395, 8092, 12138, 18207, 27310, 40965, 61447, 92170, 138255, 207382, 311073, 466609, 699913, 1049869, 1574803, 2362204, 3543306, 5314959, 7972438
Offset: 1

Views

Author

Henry Bottomley, May 02 2001

Keywords

Comments

Can be stated as the number of animals starting from a single pair if any pair of animals can produce a single offspring (as in the game Minecraft, if the player allows offspring to fully grow before breeding again). - Denis Moskowitz, Dec 05 2012
Maximum number of partial products that can be added in a Wallace tree multiplier with n-1 full adder stages. - Chinmaya Dash, Aug 19 2020

Examples

			a(6) = floor(9*3/2) = 13.
		

Crossrefs

First differences are in A073941.

Programs

  • Magma
    [ n eq 1 select 2 else Floor(Self(n-1)*(3/2)): n in [1..39] ]; // Klaus Brockhaus, Nov 14 2008
    
  • PARI
    { a=4/3; for (n=1, 500, a=a*3\2; write("b061418.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 22 2009
    
  • PARI
    first(n) = my(v=vector(n)); v[1]=2; for(i=2, n, v[i]=v[i-1]*3\2); v \\ Iain Fox, Jul 15 2022
    
  • Python
    from itertools import islice
    def A061418_gen(): # generator of terms
        a = 2
        while True:
            yield a
            a += a>>1
    A061418_list = list(islice(A061418_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n) = A061419(n) + 1 = ceiling(K*(3/2)^n) where K = 1.08151366859...
The constant K is (2/3)*K(3) (see A083286). - Ralf Stephan, May 29 2003

A002380 a(n) = 3^n reduced modulo 2^n.

Original entry on oeis.org

0, 1, 1, 3, 1, 19, 25, 11, 161, 227, 681, 1019, 3057, 5075, 15225, 29291, 55105, 34243, 233801, 439259, 269201, 1856179, 3471385, 6219851, 1882337, 5647011, 50495465, 17268667, 186023729, 21200275, 63600825, 1264544299, 3793632897, 7085931395
Offset: 0

Views

Author

Keywords

Comments

A065554 lists the indices n such that a(n+1) = 3*a(n). - Benoit Cloitre, Apr 21 2003
a(n) = (fractional part of (3/2)^n without the decimal point)/5^n = A204544(n) / 5^n. - Michel Lagneau, Jan 25 2012

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. k^n mod (k-1)^n: this sequence (k=3), A064629 (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), A138973 (k=8), A139733 (k=9).

Programs

  • Haskell
    a002380 n = 3^n `mod` 2^n  -- Reinhard Zumkeller, Jul 11 2014
  • Maple
    a:=n->3^n mod(2^n): seq(a(n), n=0..33); # Zerinvary Lajos, Feb 15 2008
  • Mathematica
    Table[ PowerMod[3, n, 2^n], {n, 0, 33}] (* Robert G. Wilson v, Dec 14 2006 *)
    Table[ 3^n - 2^n * Floor[ (3/2)^n ], {n,0,33} ] (* Fred Daniel Kline, Oct 12 2017 *)
    x[n_] := -(1/2) + (3/2)^n + ArcTan[Cot[(3/2)^n Pi]]/Pi;
    y[n_] := 3^n - 2^n * x[n];
    Array[y, 33] (* Fred Daniel Kline, Dec 21 2017 *)
  • PARI
    concat([0],vector(55,n,lift(Mod(3,2^n)^n))) \\ Joerg Arndt, Oct 14 2017
    

Extensions

More terms from Jason Earls, Jul 29 2001
Showing 1-10 of 90 results. Next