cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A094969 a(n) = floor(5^n/2^n).

Original entry on oeis.org

1, 2, 6, 15, 39, 97, 244, 610, 1525, 3814, 9536, 23841, 59604, 149011, 372529, 931322, 2328306, 5820766, 14551915, 36379788, 90949470, 227373675, 568434188, 1421085471, 3552713678, 8881784197, 22204460492, 55511151231, 138777878078, 346944695195, 867361737988
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

A094500 Least number k such that (n+1)^k / n^k >= 2.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 47, 48, 49, 49, 50, 51, 51
Offset: 1

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Comments

This sequence also describes the minimum number of (n+1)-player games, where each player has an equal chance of winning, that must be played for a given player to have at least a 50% chance of winning at least once. E.g., a(3) = 3 because in a 4-player random game, a given player will have a greater than 50% chance of winning at least once if 3 games are played. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 28 2006
Also, a(n) denotes a median m of the geometric random variable on the positive integers with mean value n+1. The median is obtained by solving 1-(n/n+1)^m >= 1/2 for least integer m. - Dennis P. Walsh, Aug 13 2012
The limit n -> inf. a(n)/n = log 2. - Robert G. Wilson v, May 13 2014

Examples

			a(3) = 3 because (4/3)^2 < 2 and (4/3)^3 > 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[((n + 1)/n)^k < 2, k++]; k]; Array[f, 75]
    (* to view the limit *) Array[ f/# &, 1000] (* Robert G. Wilson v, May 13 2014 *)
  • PARI
    a(n)=ceil(log(2)/log(1+1/n)) \\ Charles R Greathouse IV, Sep 02 2015

Formula

a(n) = n*log(2) + O(1). - Charles R Greathouse IV, Sep 02 2015

Extensions

Edited by Jon E. Schoenfield, Apr 26 2014

A094970 a(n) = floor(7^n/2^n).

Original entry on oeis.org

1, 3, 12, 42, 150, 525, 1838, 6433, 22518, 78815, 275854, 965491, 3379220, 11827271, 41395451, 144884079, 507094277, 1774829971, 6211904899, 21741667147, 76095835015, 266335422555, 932173978944, 3262608926305, 11419131242070, 39966959347247, 139884357715364, 489595252003776
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

Formula

7^n = a(n)*2^n + A138616(n). - R. J. Mathar, Oct 26 2012

A094976 a(n) = floor(8^n/3^n).

Original entry on oeis.org

1, 2, 7, 18, 50, 134, 359, 958, 2557, 6818, 18183, 48490, 129307, 344820, 919522, 2452059, 6538825, 17436866, 46498311, 123995496, 330654658, 881745755, 2351322014, 6270192038, 16720512102, 44588032273, 118901419396
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

  • Magma
    [Floor(8^n / 3^n): n in [0..40]]; // Vincenzo Librandi, Sep 08 2011
    
  • Mathematica
    Table[ Floor[(8/3)^n], {n, 0, 30}]
  • PARI
    a(n) = 8^n\3^n; \\ Michel Marcus, Oct 05 2017

A094997 a(n) = floor(11^n/9^n).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 4, 6, 7, 9, 11, 13, 16, 20, 24, 30, 37, 45, 55, 67, 82, 101, 123, 150, 184, 225, 275, 336, 411, 503, 614, 751, 918, 1122, 1372, 1677, 2049, 2505, 3062, 3742, 4574, 5590, 6832, 8351, 10207, 12475, 15247, 18636, 22777, 27839, 34025, 41587
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

  • Magma
    [Floor(11^n / 9^n): n in [0..70]]; // Vincenzo Librandi, Sep 09 2011
  • Mathematica
    Table[ Floor[(11/9)^n], {n, 0, 30}]

A094971 a(n) = floor(9^n/2^n).

Original entry on oeis.org

1, 4, 20, 91, 410, 1845, 8303, 37366, 168151, 756680, 3405062, 15322783, 68952523, 310286355, 1396288601, 6283298708, 28274844190, 127236798856, 572565594852, 2576545176835, 11594453295761, 52175039830928, 234787679239180
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

A094972 a(n) = floor(11^n/2^n).

Original entry on oeis.org

1, 5, 30, 166, 915, 5032, 27680, 152243, 837339, 4605366, 25329516, 139312339, 766217865, 4214198259, 23178090428, 127479497357, 701137235467, 3856254795069, 21209401372879, 116651707550839, 641584391529617
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

A094974 a(n) = floor(5^n/3^n).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 21, 35, 59, 99, 165, 275, 459, 765, 1276, 2126, 3544, 5907, 9846, 16410, 27351, 45585, 75975, 126625, 211042, 351737, 586229, 977048, 1628414, 2714024, 4523373, 7538956, 12564927, 20941545, 34902576, 58170960, 96951601
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

  • Magma
    [Floor(5^n / 3^n): n in [0..40]]; // Vincenzo Librandi, Sep 08 2011
  • Mathematica
    Table[ Floor[(5/3)^n], {n, 0, 30}]

A094975 a(n) = floor(7^n/3^n).

Original entry on oeis.org

1, 2, 5, 12, 29, 69, 161, 376, 878, 2050, 4783, 11162, 26044, 60771, 141799, 330865, 772020, 1801380, 4203220, 9807513, 22884198, 53396463, 124591747, 290714077, 678332846, 1582776641, 3693145496, 8617339492, 20107125483, 46916626127
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

A094977 a(n) = floor(10^n/3^n).

Original entry on oeis.org

1, 3, 11, 37, 123, 411, 1371, 4572, 15241, 50805, 169350, 564502, 1881676, 6272254, 20907515, 69691719, 232305731, 774352437, 2581174791, 8603915972, 28679719907, 95599066359, 318663554532, 1062211848441, 3540706161472
Offset: 0

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Crossrefs

Programs

  • Magma
    [Floor(10^n / 3^n): n in [0..30]]; // Vincenzo Librandi, Sep 08 2011
  • Mathematica
    Table[ Floor[(10/3)^n], {n, 0, 30}]
Showing 1-10 of 28 results. Next