cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A002379 a(n) = floor(3^n / 2^n).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 17, 25, 38, 57, 86, 129, 194, 291, 437, 656, 985, 1477, 2216, 3325, 4987, 7481, 11222, 16834, 25251, 37876, 56815, 85222, 127834, 191751, 287626, 431439, 647159, 970739, 1456109, 2184164, 3276246, 4914369, 7371554, 11057332
Offset: 0

Views

Author

Keywords

Comments

It is an important unsolved problem related to Waring's problem to show that a(n) = floor((3^n-1)/(2^n-1)) holds for all n > 1. This has been checked for 10000 terms and is true for all sufficiently large n, by a theorem of Mahler. [Lichiardopol]
a(n) = floor((3^n-1)/(2^n-1)) holds true at least for 2 <= n <= 305000. - Hieronymus Fischer, Dec 31 2008
a(n) is also the curve length (rounded down) of the Sierpiński arrowhead curve after n iterations, let a(0) = 1. - Kival Ngaokrajang, May 21 2014
a(n) is composite infinitely often (Forman and Shapiro). More exactly, a(n) is divisible by at least one of 2, 5, 7 or 11 infinitely often (Dubickas and Novikas). - Tomohiro Yamada, Apr 15 2017

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046037, A070758, A070759, A067904 (Composites and Primes).
Cf. A064628 (an analog for 4/3).

Programs

Formula

a(n) = b(n) - (-2/3)^n where b(n) is defined by the recursion b(0):=2, b(1):=5/6, b(n+1):=(5/6)*b(n) + b(n-1). - Hieronymus Fischer, Dec 31 2008
a(n) = (1/2)*(b(n) + sqrt(b(n)^2 - (-4)^n)) (with b(n) as defined above). - Hieronymus Fischer, Dec 31 2008
3^n = a(n)*2^n + A002380(n). - R. J. Mathar, Oct 26 2012
a(n) = -(1/2) + (3/2)^n + arctan(cot((3/2)^n Pi)) / Pi. - Fred Daniel Kline, Apr 14 2018
a(n+1) = round( -(1/2) + (3^n-1)/(2^n-1) ). - Fred Daniel Kline, Apr 14 2018

Extensions

More terms from Robert G. Wilson v, May 11 2004

A064628 a(n) = floor((4/3)^n).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 13, 17, 23, 31, 42, 56, 74, 99, 133, 177, 236, 315, 420, 560, 747, 996, 1328, 1771, 2362, 3149, 4199, 5599, 7466, 9954, 13273, 17697, 23596, 31462, 41950, 55933, 74577, 99437, 132583, 176777, 235703, 314271, 419028, 558704
Offset: 0

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

a(n) is the perimeter of a hexaflake (rounded down) after n iterations. The total number of holes = A000420(n) - 1. The total number of irregular polygon holes = A000420(n-1) - 1. The total number of triangle holes = 6*A000420(n-1). - Kival Ngaokrajang, Apr 18 2014
a(n) is composite infinitely often (Forman and Shapiro). More exactly, a(n) is divisible by at least one of 2, 3, 5 infinitely often (Dubickas and Novikas). - Tomohiro Yamada, Apr 15 2017

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.

Crossrefs

Cf. A046038, A070761, A070762, A067905 (Composites and Primes).

Programs

Extensions

More terms from Robert G. Wilson v, May 26 2004
OFFSET changed from 1 to 0 by Harry J. Smith, Sep 20 2009

A060692 Number of parts if 3^n is partitioned into parts of size 2^n as far as possible and into parts of size 1^n.

Original entry on oeis.org

2, 3, 6, 6, 26, 36, 28, 186, 265, 738, 1105, 3186, 5269, 15516, 29728, 55761, 35228, 235278, 441475, 272526, 1861166, 3478866, 6231073, 1899171, 5672262, 50533341, 17325482, 186108951, 21328109, 63792576, 1264831925, 3794064336, 7086578554
Offset: 1

Views

Author

Labos Elemer, Apr 20 2001

Keywords

Comments

Corresponds to the only solution of the Diophantine equation 3^n = x*2^n + y*1^n with constraint 0 <= y < 2^n. (Since 3^n is odd, of course y cannot be zero.)

Examples

			3^4 = 81 = 16 + 16 + 16 + 16 + 16 + 1, so a(4) = 5 + 1 = 6;
3^5 = 243 = 32 + 32 + 32 + 32 + 32 + 32 + 32 + 19*1, so a(5) = 7 + 19 = 26.
		

Crossrefs

Programs

  • Haskell
    a060692 n = uncurry (+) $ divMod (3 ^ n) (2 ^ n)
    -- Reinhard Zumkeller, Jul 11 2014
  • Mathematica
    Table[3^n - (-1 + 2^n) Floor[(3/2)^n], {n, 33}] (* Fred Daniel Kline, Nov 01 2017 *)
    x[n_] := -(1/2) + (3/2)^n + ArcTan[Cot[(3/2)^n Pi]]/Pi;
    y[n_] := 3^n - 2^n * x[n]; yplusx[n_] := y[n] + x[n];
    Array[yplusx, 33] (* Fred Daniel Kline, Dec 21 2017 *)
    f[n_] := Floor[3^n/2^n] + PowerMod[3, n, 2^n]; Array[f, 33] (* Robert G. Wilson v, Dec 27 2017 *)
  • PARI
    a(n) = { my(d=divrem(3^n,2^n)); d[1]+d[2] }
    
  • PARI
    a(n) = { (3^n\2^n) + (3^n%2^n) } \\ Harry J. Smith, Jul 09 2009
    

Formula

a(n) = A002379(n) + A002380(n) = floor(3^n/2^n) + (3^n mod 2^n).
For n > 2, a(n) = 3^n mod (2^n-1). - Alex Ratushnyak, Jul 22 2012

Extensions

Edited by Klaus Brockhaus, May 24 2003

A064629 a(n) = 4^n mod 3^n.

Original entry on oeis.org

0, 1, 7, 10, 13, 52, 451, 1075, 6487, 6265, 44743, 119923, 302545, 147298, 589192, 11922706, 33341917, 4227505, 146050183, 584200732, 1174541461, 4698165844, 18792663376, 43789593895, 175158375580, 700633502320, 1955245399837, 2737249942690, 18574597255747
Offset: 0

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

(a(n+1) - 4*a(n))/3^n is always one of -3, -2, -1, 0, 1, 2. - Robert Israel, Dec 01 2016

Crossrefs

Cf. k^n mod (k-1)^n: A002380 (k=3), this sequence (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), A138973 (k=8), A139733 (k=9).

Programs

Extensions

a(26) from Harry J. Smith, Sep 20 2009

A065554 Numbers k such that floor((3/2)^(k+1))/floor((3/2)^k) = 3/2.

Original entry on oeis.org

2, 9, 11, 13, 24, 29, 31, 36, 37, 40, 41, 43, 49, 50, 51, 67, 68, 70, 72, 73, 77, 79, 80, 86, 88, 91, 92, 95, 101, 102, 103, 115, 121, 126, 127, 132, 134, 136, 142, 145, 146, 151, 154, 156, 162, 165, 167, 171, 172, 176, 178, 179, 181, 191, 193, 194, 195, 198, 199
Offset: 1

Views

Author

Benoit Cloitre, Nov 28 2001

Keywords

Comments

Also k such that A002380(k+1) = 3*A002380(k). - Benoit Cloitre, Apr 21 2003
It appears that lim_{n->oo} a(n)/n = 3. - Benoit Cloitre, Jan 29 2006

Crossrefs

Programs

  • Mathematica
    a[1] = 2; a[n_ ] := a[n] = Block[ {k = a[n - 1] + 1}, While[ Floor[(3/2)^(k + 1)] / Floor[(3/2)^k] != 3/2, k++ ]; Return[k]]; Table[ a[n], {n, 1, 70} ]
  • PARI
    isok(k) = { my(f=3/2); floor(f^(k+1))/floor(f^k) == f } \\ Harry J. Smith, Oct 22 2009

Extensions

More terms from Robert G. Wilson v, Nov 30 2001

A138589 a(n) = 5^n mod 4^n.

Original entry on oeis.org

0, 1, 9, 61, 113, 53, 3337, 12589, 62945, 118117, 328441, 2690781, 9259601, 12743573, 197935593, 452807053, 2264035265, 7025209029, 35126045145, 106910748989, 809431651889, 1848135003893, 9240675019465, 28611189052909, 213424689442209, 785648470500389
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Cf. k^n mod (k-1)^n: A002380 (k=3), A064629 (k=4), this sequence (k=5), A138649 (k=6), A139786 (k=7), A138973 (k=8), A139733 (k=9).

Programs

  • Mathematica
    Table[PowerMod[5, n, 4^n], {n,0,50}] (* G. C. Greubel, Oct 01 2017 *)
  • PARI
    concat([0], vector(50, n, lift(Mod(5, 4^n)^n))) \\ Michel Marcus, Oct 02 2017

A138649 a(n) = 6^n mod 5^n.

Original entry on oeis.org

0, 1, 11, 91, 46, 1526, 15406, 45561, 117116, 312071, 1872426, 21000181, 223657336, 853662766, 5121976596, 12421312701, 74527876206, 141991475986, 2377827762166, 18081663838621, 32196037719226, 2441363034106, 491485336407761, 2948912018446566
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Cf. k^n mod (k-1)^n: A002380 (k=3), A064629 (k=4), A138589 (k=5), this sequence (k=6), A139786 (k=7), A138973 (k=8), A139733 (k=9).

Programs

  • Mathematica
    Table[PowerMod[6,n,5^n],{n,0,30}] (* Harvey P. Dale, Jan 23 2014 *)

A138973 a(n) = 8^n mod 7^n.

Original entry on oeis.org

0, 1, 15, 169, 1695, 15961, 26846, 450066, 5247614, 13156907, 226316077, 680627620, 13354327932, 65310761853, 328708074010, 1951441519231, 15611532153848, 158125187800385, 101848932467045, 7328445851378156, 35829776440278962, 286638211522231696
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Cf. k^n mod (k-1)^n: A002380 (k=3), A064629 (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), this sequence (k=8), A139733 (k=9).

Programs

  • Mathematica
    a[n_]:=PowerMod[8,n,7^n];Array[a,22,0] (* James C. McMahon, Jun 23 2025 *)
  • PARI
    a(n) = lift(Mod(8, 7^n)^n); \\ Michel Marcus, Feb 20 2018
  • Sage
    [power_mod(8,n,7^n) for n in range(0,22)] # Zerinvary Lajos, Nov 28 2009
    

A139786 a(n) = 7^n mod 6^n.

Original entry on oeis.org

0, 1, 13, 127, 1105, 1255, 24337, 263671, 725953, 42823, 40610545, 163341463, 780593185, 5464152295, 51309760081, 45711664183, 2200721587585, 12583941205639, 3454291215793, 430419865184215, 3012939056289505, 10122098073837607, 92791637157241105, 517919756258420599
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Cf. k^n mod (k-1)^n: A002380 (k=3), A064629 (k=4), A138589 (k=5), A138649 (k=6), this sequence (k=7), A138973 (k=8), A139733 (k=9).

A264918 Decimal expansion of constant z = Sum_{n>=1} {(3/2)^n} / 2^n, where {x} denotes the fractional part of x.

Original entry on oeis.org

3, 9, 3, 1, 8, 8, 4, 7, 7, 0, 4, 9, 6, 4, 4, 3, 2, 4, 4, 9, 7, 2, 5, 8, 2, 1, 3, 1, 3, 8, 9, 0, 3, 8, 8, 5, 8, 5, 4, 8, 3, 9, 1, 4, 0, 7, 8, 8, 6, 6, 2, 8, 6, 9, 5, 3, 9, 2, 9, 3, 2, 4, 7, 5, 7, 5, 7, 8, 7, 7, 5, 8, 3, 3, 8, 9, 7, 4, 9, 8, 6, 6, 8, 1, 0, 9, 7, 6, 6, 6, 2, 0, 6, 1, 0, 1, 8, 5, 8, 8, 8, 0, 1, 3, 3, 3, 0, 0, 8, 0, 5, 9, 3, 2, 2, 6, 3, 1, 5, 3, 2, 6, 8, 0, 9, 0, 4, 7, 5, 0, 4, 9, 4, 2, 6, 6, 6, 1, 2, 1, 1, 4, 2, 4, 3, 3, 4, 9, 8, 4, 4, 3, 5, 8, 4, 7, 7, 5, 8, 5, 0, 6, 5, 5, 9, 3, 3, 7, 2, 5, 0, 9, 1, 4, 3, 2, 8, 8, 7, 7, 0, 5, 4, 3, 2, 2, 3, 1, 4, 0, 7, 7, 1, 7, 1, 7, 5, 9, 5, 3, 3, 3, 7, 7, 6
Offset: 1

Views

Author

Paul D. Hanna, Dec 03 2015

Keywords

Examples

			z = 0.39318847704964432449725821313890388585483914078866\
28695392932475757877583389749866810976662061018588\
80133300805932263153268090475049426661211424334984\
43584775850655933725091432887705432231407717175953\
33776901692614854937460993931094741172922114373160\
19617637538747813543456758934332723336245738884968...
INFINITE SERIES.
(1) z = 1/4 + 1/4^2 + 3/4^3 + 1/4^4 + 19/4^5 + 25/4^6 + 11/4^8 + 161/4^9 + 227/4^10 + 681/4^11 + 1019/4^12 +...+ A002380(n)/4^n +...
(2) 3 - z = 1/2 + 2/2^2 + 3/2^3 + 5/2^4 + 7/2^5 + 11/2^6 + 17/2^7 + 25/2^8 + 38/2^9 + 57/2^10 + 86/2^11 + 129/2^12 + 194/2^13 + 291/2^14 +...+ A002379(n)/2^n +...
where
3 - z = 2.60681152295035567550274178686109611414516...
		

Crossrefs

Cf. A002379 ([(3/2)^n]), A002380 (3^n mod 2^n), A264919, A264920, A264921, A264922.

Formula

z = Sum_{n>=1} (3^n mod 2^n) / 4^n = Sum_{n>=1} A002380(n) / 4^n.
3 - z = Sum_{n>=1} [(3/2)^n] / 2^n = Sum_{n>=1} A002379(n) / 2^n, where [x] denotes the integer floor function of x.
Showing 1-10 of 22 results. Next