A002379 a(n) = floor(3^n / 2^n).
1, 1, 2, 3, 5, 7, 11, 17, 25, 38, 57, 86, 129, 194, 291, 437, 656, 985, 1477, 2216, 3325, 4987, 7481, 11222, 16834, 25251, 37876, 56815, 85222, 127834, 191751, 287626, 431439, 647159, 970739, 1456109, 2184164, 3276246, 4914369, 7371554, 11057332
Offset: 0
References
- R. K. Guy, Unsolved Problems in Number Theory, E19.
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
- S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Arturas Dubickas and Aivaras Novikas, Integer parts of powers of rational numbers, Math. Z. 251 (2005), 635--648, available from the first author's page.
- W. Forman and H. N. Shapiro, An arithmetic property of certain rational powers, Comm. Pure. Appl. Math. 20 (1967), 561-573.
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20.
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- N. Lichiardopol, Problem 925 (BCC20.19), A number-theoretic problem, in Research Problems from the 20th British Combinatorial Conference, Discrete Math., 308 (2008), 621-630.
- K. Mahler, On the fractional parts of the powers of a rational number, II, Mathematika 4 (1957), 122-124.
- Kival Ngaokrajang, Illustration of Sierpinski arrowhead curve for n = 0..5
- Eric Weisstein's World of Mathematics, Power Floors
- Wikipedia, Sierpiński arrowhead curve
Crossrefs
Programs
-
Haskell
a002379 n = 3^n `div` 2^n -- Reinhard Zumkeller, Jul 11 2014
-
Magma
[Floor(3^n / 2^n): n in [0..40]]; // Vincenzo Librandi, Sep 08 2011
-
Maple
A002379:=n->floor(3^n/2^n); seq(A002379(k), k=0..100); # Wesley Ivan Hurt, Oct 29 2013
-
Mathematica
Table[Floor[(3/2)^n], {n, 0, 40}] (* Robert G. Wilson v, May 11 2004 *) x[n_] := -(1/2) + (3/2)^n + ArcTan[Cot[(3/2)^n Pi]]/Pi; Array[x, 40] (* Fred Daniel Kline, Dec 21 2017 *) x[n_]:=Round[-(1/2) + (3^n - 1)/(2^n - 1)]; Array[x, 39, 2] (* offset n+1, Fred Daniel Kline, Apr 13 2018 *)
-
Maxima
makelist(floor(3^n/2^n), n, 0, 50); /* Martin Ettl, Oct 17 2012 */
-
PARI
a(n)=3^n>>n \\ Charles R Greathouse IV, Jun 10 2011
-
Python
def A002379(n): return 3**n>>n # Chai Wah Wu, Sep 21 2022
Formula
a(n) = b(n) - (-2/3)^n where b(n) is defined by the recursion b(0):=2, b(1):=5/6, b(n+1):=(5/6)*b(n) + b(n-1). - Hieronymus Fischer, Dec 31 2008
a(n) = (1/2)*(b(n) + sqrt(b(n)^2 - (-4)^n)) (with b(n) as defined above). - Hieronymus Fischer, Dec 31 2008
3^n = a(n)*2^n + A002380(n). - R. J. Mathar, Oct 26 2012
a(n) = -(1/2) + (3/2)^n + arctan(cot((3/2)^n Pi)) / Pi. - Fred Daniel Kline, Apr 14 2018
a(n+1) = round( -(1/2) + (3^n-1)/(2^n-1) ). - Fred Daniel Kline, Apr 14 2018
Extensions
More terms from Robert G. Wilson v, May 11 2004
Comments