A002380 a(n) = 3^n reduced modulo 2^n.
0, 1, 1, 3, 1, 19, 25, 11, 161, 227, 681, 1019, 3057, 5075, 15225, 29291, 55105, 34243, 233801, 439259, 269201, 1856179, 3471385, 6219851, 1882337, 5647011, 50495465, 17268667, 186023729, 21200275, 63600825, 1264544299, 3793632897, 7085931395
Offset: 0
References
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
- S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3322 (first 101 terms from Zak Seidov)
- Eric Weisstein's World of Mathematics, Fractional Part.
- Eric Weisstein's World of Mathematics, Power Fractional Parts.
Crossrefs
Programs
-
Haskell
a002380 n = 3^n `mod` 2^n -- Reinhard Zumkeller, Jul 11 2014
-
Maple
a:=n->3^n mod(2^n): seq(a(n), n=0..33); # Zerinvary Lajos, Feb 15 2008
-
Mathematica
Table[ PowerMod[3, n, 2^n], {n, 0, 33}] (* Robert G. Wilson v, Dec 14 2006 *) Table[ 3^n - 2^n * Floor[ (3/2)^n ], {n,0,33} ] (* Fred Daniel Kline, Oct 12 2017 *) x[n_] := -(1/2) + (3/2)^n + ArcTan[Cot[(3/2)^n Pi]]/Pi; y[n_] := 3^n - 2^n * x[n]; Array[y, 33] (* Fred Daniel Kline, Dec 21 2017 *)
-
PARI
concat([0],vector(55,n,lift(Mod(3,2^n)^n))) \\ Joerg Arndt, Oct 14 2017
Extensions
More terms from Jason Earls, Jul 29 2001
Comments