A060710 Number of subgroups of dihedral group with 2n elements, counting conjugate subgroups only once, i.e., conjugacy classes of subgroups of the dihedral group.
2, 5, 4, 8, 4, 10, 4, 11, 6, 10, 4, 16, 4, 10, 8, 14, 4, 15, 4, 16, 8, 10, 4, 22, 6, 10, 8, 16, 4, 20, 4, 17, 8, 10, 8, 24, 4, 10, 8, 22, 4, 20, 4, 16, 12, 10, 4, 28, 6, 15, 8, 16, 4, 20, 8, 22, 8, 10, 4, 32, 4, 10, 12, 20, 8, 20, 4, 16, 8, 20, 4, 33, 4, 10, 12, 16, 8, 20, 4, 28, 10, 10, 4
Offset: 1
Keywords
Examples
The dihedral group D6 is isomorphic to the symmetric group S_3 and the conjugacy classes of subgroups are: the trivial group, the whole group, subgroup of order 2 generated by a transposition and the subgroup A_3 generated by the 3-cycles. So a(3) = 4.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[n_] := DivisorSum[n, 3-Mod[#,2]&]; Array[a, 100] (* Jean-François Alcover, Jun 03 2019 *)
-
PARI
a(n)=if(n<1, 0, sumdiv(n,d, 3-d%2)) /* Michael Somos, Sep 20 2005 */
-
PARI
{ for (n=1, 1000, write("b060710.txt", n, " ", sumdiv(n, d, 3 - d%2)); ) } \\ Harry J. Smith, Jul 10 2009
-
Sage
def A060710(n): return add(3 - int(is_odd(d)) for d in divisors(n)) [A060710(n) for n in (1..83)] # Peter Luschny, Sep 12 2012
Formula
For even n, a(n) = 2*tau(n) + tau(n/2).
For odd n, a(n) = tau(2n) = 2*tau(n) = 2*A000005(n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 12 2001
From Michael Somos, Sep 20 2005: (Start)
Moebius transform is period 2 sequence [2, 3, ...].
G.f.: Sum_{k>0} x^k*(2+3x^k)/(1-x^(2k)) = Sum_{k>0} 2*x^(2k-1)/(1-x^(2k-1)) + 3*x^(2k)/(1-x^(2k)). (End)
a(n) = 4*tau(n) - tau(2n). - Ridouane Oudra, Jan 16 2023
Sum_{k=1..n} a(k) ~ n*(5*log(n) + 10*gamma - log(2) - 5)/2, where gamma is Euler's constant (A001622). - Amiram Eldar, Jan 21 2023
Extensions
More terms from Vladeta Jovovic, Jul 15 2001
Comments