cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060710 Number of subgroups of dihedral group with 2n elements, counting conjugate subgroups only once, i.e., conjugacy classes of subgroups of the dihedral group.

Original entry on oeis.org

2, 5, 4, 8, 4, 10, 4, 11, 6, 10, 4, 16, 4, 10, 8, 14, 4, 15, 4, 16, 8, 10, 4, 22, 6, 10, 8, 16, 4, 20, 4, 17, 8, 10, 8, 24, 4, 10, 8, 22, 4, 20, 4, 16, 12, 10, 4, 28, 6, 15, 8, 16, 4, 20, 8, 22, 8, 10, 4, 32, 4, 10, 12, 20, 8, 20, 4, 16, 8, 20, 4, 33, 4, 10, 12, 16, 8, 20, 4, 28, 10, 10, 4
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001

Keywords

Comments

The total number of subgroups, counting conjugate subgroups as distinct, is A007503.
Also the number of subgroups of the group C_n x C_2 (where C_n is the cyclic group with n elements).

Examples

			The dihedral group D6 is isomorphic to the symmetric group S_3 and the conjugacy classes of subgroups are: the trivial group, the whole group, subgroup of order 2 generated by a transposition and the subgroup A_3 generated by the 3-cycles. So a(3) = 4.
		

Crossrefs

A row of A216624.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 3-Mod[#,2]&];
    Array[a, 100] (* Jean-François Alcover, Jun 03 2019 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n,d, 3-d%2)) /* Michael Somos, Sep 20 2005 */
    
  • PARI
    { for (n=1, 1000, write("b060710.txt", n, " ", sumdiv(n, d, 3 - d%2)); ) } \\ Harry J. Smith, Jul 10 2009
    
  • Sage
    def A060710(n): return add(3 - int(is_odd(d)) for d in divisors(n))
    [A060710(n) for n in (1..83)] # Peter Luschny, Sep 12 2012

Formula

For even n, a(n) = 2*tau(n) + tau(n/2).
For odd n, a(n) = tau(2n) = 2*tau(n) = 2*A000005(n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 12 2001
From Michael Somos, Sep 20 2005: (Start)
Moebius transform is period 2 sequence [2, 3, ...].
G.f.: Sum_{k>0} x^k*(2+3x^k)/(1-x^(2k)) = Sum_{k>0} 2*x^(2k-1)/(1-x^(2k-1)) + 3*x^(2k)/(1-x^(2k)). (End)
a(n) = 4*tau(n) - tau(2n). - Ridouane Oudra, Jan 16 2023
Sum_{k=1..n} a(k) ~ n*(5*log(n) + 10*gamma - log(2) - 5)/2, where gamma is Euler's constant (A001622). - Amiram Eldar, Jan 21 2023

Extensions

More terms from Vladeta Jovovic, Jul 15 2001