cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A076782 a(n) = 10^(n^2).

Original entry on oeis.org

1, 10, 10000, 1000000000, 10000000000000000, 10000000000000000000000000, 1000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000000000000000000, 1000000000000000000000000000000000000000000000000000000000000000000000000000000000
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over an alphabet of size 10.
The 10th term of this sequence is the googol (10^100).
The term in position 10^50 (sqrt(googol)) is the googolplex (10^googol).
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over an alphabet of size k.

Crossrefs

Programs

A076781 a(n) = 6^(n^2).

Original entry on oeis.org

1, 6, 1296, 10077696, 2821109907456, 28430288029929701376, 10314424798490535546171949056, 134713546244127343440523266742756048896, 63340286662973277706162286946811886609896461828096
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over an alphabet of size 6.
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over Z/kZ.

Crossrefs

Programs

Extensions

More terms from Philippe Deléham, Nov 24 2007
a(5) corrected by Vincenzo Librandi, May 30 2011

A076783 a(n) = 11^(n^2).

Original entry on oeis.org

1, 11, 14641, 2357947691, 45949729863572161, 108347059433883722041830251, 30912680532870672635673352936887453361, 1067189571633593786424240872639621090354383081702091, 4457915684525902395869512133369841539490161434991526715513934826241
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over GF(11).
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over GF(k).

Crossrefs

Programs

Extensions

More terms from Rick L. Shepherd, May 06 2008

A135315 a(n) = 8^n * 7^(n^2).

Original entry on oeis.org

1, 56, 153664, 20661046784, 136122083613085696, 43944136529148801869643776, 695135330857032999706040305346412544, 538807794445443668301287736683760181725850763264
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2007

Keywords

Comments

Hankel transform of A130979 .

Programs

Formula

a(n) = 8^n * 7^(n^2) = A001018(n) * A060759(n) .

A135425 a(n) = 6^n * 7^(n^2).

Original entry on oeis.org

1, 42, 86436, 8716379112, 43069878018202896, 10428149586506991068675232, 123719154344427992379322114891976256, 71922158596935138096613542488243622890285377152
Offset: 0

Views

Author

Philippe Deléham, Dec 12 2007

Keywords

Comments

Hankel transform of A132866.

Crossrefs

Programs

  • Mathematica
    Table[6^n * 7^(n^2), {n, 0, 25}] (* G. C. Greubel, Oct 14 2016 *)

Formula

a(n) = 6^n*7^(n^2) = A000400(n)*A060759(n).
Showing 1-5 of 5 results.