cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A076782 a(n) = 10^(n^2).

Original entry on oeis.org

1, 10, 10000, 1000000000, 10000000000000000, 10000000000000000000000000, 1000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000000000000000000, 1000000000000000000000000000000000000000000000000000000000000000000000000000000000
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over an alphabet of size 10.
The 10th term of this sequence is the googol (10^100).
The term in position 10^50 (sqrt(googol)) is the googolplex (10^googol).
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over an alphabet of size k.

Crossrefs

Programs

A076781 a(n) = 6^(n^2).

Original entry on oeis.org

1, 6, 1296, 10077696, 2821109907456, 28430288029929701376, 10314424798490535546171949056, 134713546244127343440523266742756048896, 63340286662973277706162286946811886609896461828096
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over an alphabet of size 6.
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over Z/kZ.

Crossrefs

Programs

Extensions

More terms from Philippe Deléham, Nov 24 2007
a(5) corrected by Vincenzo Librandi, May 30 2011

A076783 a(n) = 11^(n^2).

Original entry on oeis.org

1, 11, 14641, 2357947691, 45949729863572161, 108347059433883722041830251, 30912680532870672635673352936887453361, 1067189571633593786424240872639621090354383081702091, 4457915684525902395869512133369841539490161434991526715513934826241
Offset: 0

Views

Author

Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 15 2002

Keywords

Comments

Number of n X n matrices over GF(11).
a(n) = k^(n^2) with k = 2, 3, 4, ... counts n X n matrices over GF(k).

Crossrefs

Programs

Extensions

More terms from Rick L. Shepherd, May 06 2008

A135320 a(n) = 9^n * 8^(n^2).

Original entry on oeis.org

1, 72, 331776, 97844723712, 1846757322198614016, 2230808147575757441788280832, 172462464674787958108367218731066064896, 853310183691766528293183623126485287871181154680832
Offset: 0

Views

Author

Philippe Deléham, Dec 06 2007

Keywords

Comments

Hankel transform of A130980 .

Programs

Formula

a(n) = 9^n * 8^(n^2) = A001019(n) * A060760(n).

Extensions

Corrected a(5), Vincenzo Librandi, May 31 2011

A135426 a(n) = 7^n * 8^(n^2).

Original entry on oeis.org

1, 56, 200704, 46036680704, 675821419082285056, 634950507820721016852709376, 38179283319360245979311522664775942144, 146924980824268039790798000267293196637757037871104
Offset: 0

Views

Author

Philippe Deléham, Dec 12 2007

Keywords

Comments

Hankel transform of A132867.

Crossrefs

Programs

Formula

a(n) = 7^n*8^(n^2) = A000420(n)*A060760(n).
Showing 1-5 of 5 results.