cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060765 Numbers n such that every difference between consecutive divisors (ordered by increasing magnitude) of n is also a divisor of n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 42, 48, 54, 60, 64, 72, 96, 100, 108, 120, 128, 144, 156, 162, 168, 180, 192, 216, 240, 256, 272, 288, 294, 300, 324, 342, 360, 384, 432, 480, 486, 500, 504, 512, 576, 600, 648, 720, 768, 840, 900, 960, 972, 1008, 1024
Offset: 1

Views

Author

Labos Elemer, Apr 24 2001

Keywords

Comments

Equivalently, A060763(n)=0.
Powers of 2 and factorials up to 7! are here.
For each k=1..A000005(a(n))-1 exists k' < A000005(a(n)) such that A193829(a(n),k) = A027750(a(n),k'). - Reinhard Zumkeller, Jun 25 2015
From Robert Israel, Jul 03 2017: (Start)
Also includes 3*2^k and 2*3^k for all k>= 1.
All terms except 1 are even. (End)
Conjecture: a(n) has the property that for each prime divisor p, p-1|a(n)/p. If this conjecture is true then terms can be searched by distinct prime divisors. - David A. Corneth, Jul 06 2017
The divisors of a(n) form a Brauer chain. See A079301 for the definition of a Brauer chain. - Zizheng Fang, Jan 30 2020

Examples

			For n = 12, divisors={1, 2, 3, 4, 6, 12}; differences={1, 1, 1, 2, 6}; every difference is a divisor, so 12 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (sort, nub); import Data.List.Ordered (subset)
    a060765 n = a060765_list !! (n-1)
    a060765_list = filter
    (\x -> sort (nub $ a193829_row x) `subset` a027750_row' x) [1..]
    -- Reinhard Zumkeller, Jun 25 2015
    
  • Magma
    [k:k in [1..1025]| forall{i:i in [2..#Divisors(k)]|k mod (d[i]-d[i-1]) eq 0 where d is Divisors(k)}]; // Marius A. Burtea, Jan 30 2020
  • Maple
    f:= proc(n) local D,L;
      D:= numtheory:-divisors(n);
      L:= sort(convert(D,list));
      nops(convert(L[2..-1]-L[1..-2],set) minus D);
    end proc:
    select(f=0, [$1..1000]); # Robert Israel, Jul 03 2017
  • Mathematica
    test[n_ ] := Length[Complement[Drop[d=Divisors[n], 1]-Drop[d, -1], d]]==0; Select[Range[1, 1024], test]
    (* Second program: *)
    Select[Range[2^10], Function[n, AllTrue[Differences@ Divisors@ n, Divisible[n, #] &]]] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    isok(n)=my(d=divisors(n), v=vecsort(vector(#d-1, k, d[k+1]-d[k]),,8)); #select(x->setsearch(d, x), v) == #v; \\ Michel Marcus, Jul 06 2017
    
  • PARI
    is(n)=my(t); fordiv(n,d, if(n%(d-t), return(0)); t=d); 1 \\ Charles R Greathouse IV, Jul 12 2017
    

Extensions

Edited by Dean Hickerson, Jan 22 2002