A060765 Numbers n such that every difference between consecutive divisors (ordered by increasing magnitude) of n is also a divisor of n.
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 42, 48, 54, 60, 64, 72, 96, 100, 108, 120, 128, 144, 156, 162, 168, 180, 192, 216, 240, 256, 272, 288, 294, 300, 324, 342, 360, 384, 432, 480, 486, 500, 504, 512, 576, 600, 648, 720, 768, 840, 900, 960, 972, 1008, 1024
Offset: 1
Keywords
Examples
For n = 12, divisors={1, 2, 3, 4, 6, 12}; differences={1, 1, 1, 2, 6}; every difference is a divisor, so 12 is in the sequence.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..750
Programs
-
Haskell
import Data.List (sort, nub); import Data.List.Ordered (subset) a060765 n = a060765_list !! (n-1) a060765_list = filter (\x -> sort (nub $ a193829_row x) `subset` a027750_row' x) [1..] -- Reinhard Zumkeller, Jun 25 2015
-
Magma
[k:k in [1..1025]| forall{i:i in [2..#Divisors(k)]|k mod (d[i]-d[i-1]) eq 0 where d is Divisors(k)}]; // Marius A. Burtea, Jan 30 2020
-
Maple
f:= proc(n) local D,L; D:= numtheory:-divisors(n); L:= sort(convert(D,list)); nops(convert(L[2..-1]-L[1..-2],set) minus D); end proc: select(f=0, [$1..1000]); # Robert Israel, Jul 03 2017
-
Mathematica
test[n_ ] := Length[Complement[Drop[d=Divisors[n], 1]-Drop[d, -1], d]]==0; Select[Range[1, 1024], test] (* Second program: *) Select[Range[2^10], Function[n, AllTrue[Differences@ Divisors@ n, Divisible[n, #] &]]] (* Michael De Vlieger, Jul 12 2017 *)
-
PARI
isok(n)=my(d=divisors(n), v=vecsort(vector(#d-1, k, d[k+1]-d[k]),,8)); #select(x->setsearch(d, x), v) == #v; \\ Michel Marcus, Jul 06 2017
-
PARI
is(n)=my(t); fordiv(n,d, if(n%(d-t), return(0)); t=d); 1 \\ Charles R Greathouse IV, Jul 12 2017
Extensions
Edited by Dean Hickerson, Jan 22 2002
Comments