A060798 Numbers k such that difference between the upper and lower central divisors of k is 1.
2, 4, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450
Offset: 1
Examples
The divisors of 2 are 1 and 2, so the upper central divisor is 2 and the lower central divisor is 1, so a(1)=2 is a member. k = 4032 = 2*2*2*2*2*2*3*3*7 is here because its central divisors (the 21st and 22nd divisors) are {63,64} which differ by 1.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..2000 [First 1000 terms from Harry J. Smith]
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).
Programs
-
Mathematica
dulcdQ[n_]:=Module[{d=Divisors[n],len},len=Floor[Length[d]/2];d[[len+1]] - d[[len]]==1]; Select[Range[2500],dulcdQ] (* or *) Join[{2,4},Table[ n(n-1),{n,3,60}]] (* after David A. Corneth's comment and formula *) (* Harvey P. Dale, Aug 28 2018 *)
-
PARI
{ n=-1; for (m=1, 999000, d=divisors(m); if (m==1 || (d[1 + length(d)\2] - d[length(d)\2]) == 1, write("b060798.txt", n++, " ", m)); ) } \\ Harry J. Smith, Jul 13 2009
-
PARI
first(n) = res = List([2, 4]); for(i = 3, n, listput(res, i*(i-1))); res \\ David A. Corneth, Sep 02 2018
Formula
Solutions to A033677(k) - A060775(k) = 1, where k = j*(j+1) and at least one of j and j+1 is composite.
Except at n < 5, this sequence satisfies a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2). - Georgi Guninski, Jun 07 2010 [This follows from Corneth's theorem above. - N. J. A. Sloane, Sep 02 2018]
G.f.: (2*x^2-2*x+1)*(x^3-x^2-x-1) / (x-1)^3. - Colin Barker, Apr 16 2014 [This follows from Corneth's theorem above. - N. J. A. Sloane, Sep 02 2018]
Extensions
Start and offset changed by N. J. A. Sloane, Sep 02 2018 at the suggestion of Harvey P. Dale. Further edited by N. J. A. Sloane, Sep 02 2018
Comments