A060831 a(n) = Sum_{k=1..n} (number of odd divisors of k) (cf. A001227).
0, 1, 2, 4, 5, 7, 9, 11, 12, 15, 17, 19, 21, 23, 25, 29, 30, 32, 35, 37, 39, 43, 45, 47, 49, 52, 54, 58, 60, 62, 66, 68, 69, 73, 75, 79, 82, 84, 86, 90, 92, 94, 98, 100, 102, 108, 110, 112, 114, 117, 120, 124, 126, 128, 132, 136, 138, 142, 144, 146, 150, 152, 154, 160
Offset: 0
Keywords
Examples
E.g., for a(7), we consider the odd divisors of 1,2,3,4,5,6,7, which gives 1,1,2,1,2,2,2 = 11. - _Jon Perry_, Mar 22 2004 Example illustrating the old definition: a(7) = 11 since 1, 2, 3, 4, 5, 6, 7, 1+2, 2+3, 3+4, 1+2+3 are all 7 or less. From _Omar E. Pol_, Dec 02 2020: (Start) Illustration of initial terms: Diagram n a(n) 0 0 _| 1 1 _|1| 2 2 _|1 _| 3 4 _|1 |1| 4 5 _|1 _| | 5 7 _|1 |1 _| 6 9 _|1 _| |1| 7 11 _|1 |1 | | 8 12 _|1 _| _| | 9 15 _|1 |1 |1 _| 10 17 _|1 _| | |1| 11 19 _|1 |1 _| | | 12 21 |1 | |1 | | ... a(n) is also the total number of horizontal line segments in the first n levels of the diagram. For n = 5 there are seven horizontal line segments, so a(5) = 7. Cf. A237048, A286001. (End) From _Omar E. Pol_, Dec 19 2020: (Start) a(n) is also the number of regions in the diagram of the symmetries of sigma after n stages, including the subparts, as shown below (Cf. A279387): . _ _ _ _ . _ _ _ |_ _ _ |_ . _ _ _ |_ _ _| |_ _ _| |_|_ . _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ | . _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | | . _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | | . |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_| . . 0 1 2 4 5 7 9 (End)
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
A060831 := proc(n) add(numtheory[tau](n-i+1),i=1..ceil(n/2)) ; end proc: seq(A060831(n),n=0..100) ; # Wesley Ivan Hurt, Oct 02 2013
-
Mathematica
f[n_] := Sum[ -(-1^k)Floor[n/(2k - 1)], {k, n}]; Table[ f[n], {n, 0, 65}] (* Robert G. Wilson v, Jun 16 2006 *) Accumulate[Table[Count[Divisors[n],?OddQ],{n,0,70}]] (* _Harvey P. Dale, Nov 26 2023 *)
-
PARI
a(n)=local(c);c=0;for(i=1,n,c+=sumdiv(i,X,X%2));c
-
PARI
for (n=0, 1000, s=n; d=3; while (n>=d, s+=n\d; d+=2); write("b060831.txt", n, " ", s); ) \\ Harry J. Smith, Jul 12 2009
-
PARI
a(n)=my(n2=n\2); sum(k=1, sqrtint(n), n\k)*2-sqrtint(n)^2-sum(k=1, sqrtint(n2), n2\k)*2+sqrtint(n2)^2 \\ Charles R Greathouse IV, Jun 18 2015
-
Python
def A060831(n): return n+sum(n//i for i in range(3,n+1,2)) # Chai Wah Wu, Jul 16 2022
-
Python
from math import isqrt def A060831(n): return ((t:=isqrt(m:=n>>1))+(s:=isqrt(n)))*(t-s)+(sum(n//k for k in range(1,s+1))-sum(m//k for k in range(1,t+1))<<1) # Chai Wah Wu, Oct 23 2023
Formula
a(n) = Sum_{i=1..n} A001227(i).
a(n) = a(n-1) + A001227(n).
a(n) = n + floor(n/3) + floor(n/5) + floor(n/7) + floor(n/9) + ...
a(n) = Sum_{i=1..ceiling(n/2)} A000005(n-i+1). - Wesley Ivan Hurt, Sep 30 2013
a(n) = Sum_{i=floor((n+2)/2)..n} A000005(i). - N. J. A. Sloane, Dec 06 2020, modified by Xiaohan Zhang, Nov 07 2022
G.f.: (1/(1 - x))*Sum_{k>=1} x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 23 2016
a(n) ~ n*(log(2*n) + 2*gamma - 1) / 2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 30 2019
Extensions
Definition simplified by N. J. A. Sloane, Dec 05 2020
Comments