cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A078359 Number of ways to write n as sum of a positive square and a positive cube.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Comments

a(A066650(n))=0, a(A055394(n))>0, a(A078360(n))=1, a(A054402(n))>1.
Earliest entries with a(n)=3 are n=1737, 2089, 2628, 2817. Earliest entries with a(n)=4 are n=1025, 19225, 27289, 29025, 39329, 48025, 54225. Earliest entries with a(n)=5 are n=92025, 540900, 567225, 747225. There are no a(n)>=6 in the range n=1..700000. - R. J. Mathar, Aug 16 2006
a(3375900) = 6 and a(5472225) = 7 are the first entries with those values. - Robert Israel, Jun 25 2024, [but see A060835. - Hugo Pfoertner, Jun 26 2024]

Examples

			a(1025)=4, as 1025 = 5^2 + 10^3 = 30^2 + 5^3 = 31^2 + 4^3 = 32^2 + 1^3.
		

Crossrefs

Programs

  • Maple
    interface(prettyprint=0) : A078359 := proc(n) local resul,isq,icu ; resul := 0 ; icu := 1 ; while icu^3 < n do if issqr(n-icu^3) then resul := resul+1 ; fi ; icu := icu+1 ; od ; RETURN(resul) ; end: for n from 1 to 100000 do printf("%d %d ",n,A078359(n)) ; od ; # R. J. Mathar, Aug 16 2006
  • Mathematica
    a[n_] := Which[r = Reduce[x > 0 && y > 0 && n == x^2 + y^3, {x, y}, Integers]; r === False, 0, r[[0]] === And, 1, r[[0]] === Or, Length[r], True, Print["error: ", r]];
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Feb 13 2018 *)
  • Python
    from collections import Counter
    from itertools import count, takewhile, product
    def aupto(lim):
      sqs = list(takewhile(lambda x: x<=lim-1, (i**2 for i in count(1))))
      cbs = list(takewhile(lambda x: x<=lim-1, (i**3 for i in count(1))))
      cts = Counter(sum(p) for p in product(sqs, cbs))
      return [cts[i] for i in range(1, lim+1)]
    print(aupto(105)) # Michael S. Branicky, May 29 2021

Formula

G.f.: (Sum_{k>=1} x^(k^2)) * (Sum_{k>=1} x^(k^3)). - Seiichi Manyama, Jun 17 2023

A122054 Least positive number with exactly n partitions into a square and a cube.

Original entry on oeis.org

1, 2, 17, 1737, 1025, 92025, 3375900, 5472225, 35964225, 930860225, 1000837225, 4979585600, 38515961025, 88154795025, 203947076025, 88813460025, 5684061441600, 77806025000000, 64745012358225
Offset: 0

Views

Author

Zak Seidov, Oct 15 2006

Keywords

Comments

The sequence is not monotonic.
Equals 1 followed by A060835.

Examples

			a(0)=1 because there's no partition of 1 into a square and a cube;
a(1)=2 because 2 = 1^2 + 1^3, one partition;
a(2)=17 because 17 = 3^2 + 2^3 = 4^2 + 1^3, two partitions;
a(3)=1737 because 1737 = 3^2 + 12^3 = 35^2 + 8^3 = 39^2 + 6^3, three partitions, etc.
Table of partitions:
{m,{a_i,b_i}}
{1,{-}}
{2,{1,1}}
{17,{3,2},{4,1}}
{1737,{3,12},{35,8},{39,6}}
{1025,{5,10},{30,5},{31,4},{32,1}}
{92025,{30,45},{152,41},{213,36},{255,30},{303,6}}
{3375900,{30,150},{1430,110},{1551,99},{1794,54},{1830,30},{1837,11}}
{5472225,{143,176},{990,165},{1935,120},{2035,110},{2251,74},{2277,66},{2321,44}}
{35964225,{165,330},{3167,296},{4035,270},{4191,264},{5610,165},{5885,110},{5973,66},{5997,6}}
{930860225,{13315,910},{23139,734},{26817,596},{29560,385},{30271,244},{30335,220},{30460,145},{30465,140},{30510,5}}
{1000837225,{915,1000},{16921,894},{19665,850},{20960,825},{24735,730},{29465,510},{30221,444},{31608,121},{31635,40},{31636,9}}
{4979585600,{8160,1700},{24512,1636},{40392,1496},{48785,1375},{49640,1360},{64515,935},{65560,880},{66840,800},{69960,440},{70024,424},{70565,55}}
{38515961025,{20330,3365},{41507,3326},{73755,3210},{95084,3089},{115595,2930},{118431,2904},{132255,2760},{153953,2456},{176355,1950},{190305,1320},{195570,645},{196254,69}}
		

Crossrefs

Formula

m=a^2+b^3, a,b>0.

Extensions

Corrected a(7), added a(8)-a(12) from Lars Blomberg, Feb 15 2016

A273788 Least number k such that k^2 + k^3 is of the form x^2 + y^3 in exactly n ways where x, y > 0.

Original entry on oeis.org

1, 6, 24, 40, 180, 440, 3640, 18480, 137280, 1320, 703560, 15960, 1256640, 1436160, 96360
Offset: 1

Views

Author

Altug Alkan, May 30 2016

Keywords

Examples

			a(2) = 6 because 6^2 + 6^3 = 15^2 + 3^3.
		

Crossrefs

Extensions

a(7)-a(15) from Giovanni Resta, Jun 03 2016

A274053 Least squarefree number that is the sum of a nonzero square and a positive cube in exactly n ways.

Original entry on oeis.org

2, 17, 2089, 27289, 3030569, 6808609, 1632201497
Offset: 1

Views

Author

Altug Alkan, Jun 08 2016

Keywords

Examples

			a(1) = 2 because 2 = 1^2 + 1^3.
a(2) = 17 because 17 = 4^2 + 1^3 = 3^2 + 2^3.
a(3) = 2089 because 2089 = 45^2 + 4^3 = 33^2 + 10^3 = 19^2 + 12^3.
a(4) = 27289 because 27289 = 29*941 = 165^2 + 4^3 = 129^2 + 22^3 = 108^2 + 25^3 = 17^2 + 30^3.
		

Crossrefs

Extensions

a(6)-a(7) from Giovanni Resta, Jun 12 2016
Showing 1-4 of 4 results.