cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060851 a(n) = (2n-1) * 3^(2n-1).

Original entry on oeis.org

3, 81, 1215, 15309, 177147, 1948617, 20726199, 215233605, 2195382771, 22082967873, 219667417263, 2165293113021, 21182215236075, 205891132094649, 1990280943581607, 19147875284802357, 183448998696332259, 1751104078464989745, 16660504517966902431
Offset: 1

Views

Author

Frank Ellermann, May 03 2001

Keywords

Comments

Denominators of odd terms in expansion of arctanh(s/3); numerators are all 1. - Gerry Martens, Jul 26 2015

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 28-40.

Crossrefs

Cf. A002162 (log(2)), A001620 (Euler's constant).

Programs

Formula

Sum_{n>=1} 2/a(n) = log(2).
Sum_{n>=1} (2/a(n) - zeta(2n+1)/(2^(2n)*(2n+1))) = gamma (Euler's constant).
Sum_{n>=1} ((4n+2)/a(n) - zeta(2n+1)/2^(2n))/(2n+1) = gamma (Euler's constant).
Sum_{n>=1} ((4n+2)/a(n) - zeta(2n+1)/2^(2n)) = 7/4.
Sum_{n>=1} ((2n+1)/a(n) - zeta(2n+1)/2^(2n+1)) = 7/8.
From R. J. Mathar, May 07 2013: (Start)
G.f.: 3*x*(1+9*x) / (9*x-1)^2.
a(n+1) = 3*A155988(n). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = arctan(1/3). - Amiram Eldar, Feb 26 2022
E.g.f.: (1 + exp(9*x)*(18*x - 1))/3. - Stefano Spezia, Dec 26 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001