cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060854 Array T(m,n) read by antidiagonals: T(m,n) (m >= 1, n >= 1) = number of ways to arrange the numbers 1,2,...,m*n in an m X n matrix so that each row and each column is increasing.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 14, 42, 14, 1, 1, 42, 462, 462, 42, 1, 1, 132, 6006, 24024, 6006, 132, 1, 1, 429, 87516, 1662804, 1662804, 87516, 429, 1, 1, 1430, 1385670, 140229804, 701149020, 140229804, 1385670, 1430, 1, 1, 4862, 23371634, 13672405890, 396499770810, 396499770810, 13672405890, 23371634, 4862, 1
Offset: 1

Views

Author

R. H. Hardin, May 03 2001

Keywords

Comments

Multidimensional Catalan numbers; a special case of the "hook-number formula".
Number of paths from (0,0,...,0) to (n,n,...,n) in m dimensions, all coordinates increasing: if (x_1,x_2,...,x_m) is on the path, then x_1 <= x_2 <= ... <= x_m. Number of ways to label an n by m array with all the values 1..n*m such that each row and column is strictly increasing. Number of rectangular Young Tableaux. Number of linear extensions of the n X m lattice (the divisor lattice of a number having exactly two prime divisors). - Mitch Harris, Dec 27 2005
Given m*n lines in a {(m + 1)(n - 1)}-dimensional space, T(m, n) is the number of {n*(m-1)-1}-dimensional spaces cutting these lines in points (see Fontanari and Castelnuovo). - Stefano Spezia, Jun 19 2022

Examples

			Array begins:
  1,   1,     1,         1,            1,                1, ...
  1,   2,     5,        14,           42,              132, ...
  1,   5,    42,       462,         6006,            87516, ...
  1,  14,   462,     24024,      1662804,        140229804, ...
  1,  42,  6006,   1662804,    701149020,     396499770810, ...
  1, 132, 87516, 140229804, 396499770810, 1671643033734960, ...
		

References

  • Guido Castelnuovo, Numero degli spazi che segano più rette in uno spazio ad n dimensioni, Rendiconti della R. Accademia dei Lincei, s. IV, vol. V, 4 agosto 1889. In Guido Castelnuovo, Memorie scelte, Zanichelli, Bologna 1937, pp. 55-64 (in Italian).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 7.23.19(b).

Crossrefs

Rows give A000108 (Catalan numbers), A005789, A005790, A005791, A321975, A321976, A321977, A321978.
Diagonals give A039622, A060855, A060856.
Cf. A227578. - Alois P. Heinz, Jul 18 2013
Cf. A321716.

Programs

  • Maple
    T:= (m, n)-> (m*n)! * mul(i!/(m+i)!, i=0..n-1):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..10);
  • Mathematica
    maxm = 10; t[m_, n_] := Product[k!, {k, 0, n - 1}]*(m*n)! / Product[k!, {k, m, m + n - 1}]; Flatten[ Table[t[m + 1 - n, n], {m, 1, maxm}, {n, 1, m}]] (* Jean-François Alcover, Sep 21 2011 *)
    Table[ BarnesG[n+1]*(n*(m-n+1))!*BarnesG[m-n+2] / BarnesG[m+2], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 30 2016 *)
  • PARI
    {A(i, j) = if( i<0 || j<0, 0, (i*j)! / prod(k=1, i+j-1, k^vecmin([k, i, j, i+j-k])))}; /* Michael Somos, Jan 28 2004 */

Formula

T(m, n) = 0!*1!*..*(n-1)! *(m*n)! / ( m!*(m+1)!*..*(m+n-1)! ).
T(m, n) = A000142(m*n)*A000178(m-1)*A000178(n-1)/A000178(m+n-1) = A000142(A004247(m, n)) * A007318(m+n, n)/A009963(m+n, n). - Henry Bottomley, May 22 2002

Extensions

More terms from Frank Ellermann, May 21 2001