cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060882 a(n) = n-th primorial (A002110) minus next prime.

Original entry on oeis.org

-1, -1, 1, 23, 199, 2297, 30013, 510491, 9699667, 223092841, 6469693199, 200560490093, 7420738134769, 304250263527167, 13082761331669983, 614889782588491357, 32589158477190044671, 1922760350154212639009
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

It is well-known and easy to prove (see Honsbeger) that a(n) > 0 for n > 1. - N. J. A. Sloane, Jul 05 2009
Terms are pairwise coprime with very high probability. I didn't find terms which are pairwise noncoprime, although it may be a case of the "strong law of small numbers." - Daniel Forgues, Apr 23 2012

References

  • R. Honsberger, Mathematical Diamonds, MAA, 2003, see p. 79. [Added by N. J. A. Sloane, Jul 05 2009]

Crossrefs

Programs

  • Maple
    pp:=n->mul(ithprime(i),i=1..n);
    [seq(pp(n)-ithprime(n+1),n=1..20)];
  • Mathematica
    Join[{-1},With[{nn=20},#[[1]]-#[[2]]&/@Thread[{FoldList[Times,1, Prime[ Range[nn]]],Prime[Range[nn+1]]}]]] (* Harvey P. Dale, May 10 2013 *)
  • PARI
    { n=-1; m=1; forprime (p=2, prime(101), write("b060882.txt", n++, " ", m - p); m*=p; ) } \\ Harry J. Smith, Jul 13 2009
    
  • Python
    from sympy import prime, primorial
    def A060882(n): return primorial(n)-prime(n+1) if n else -1 # Chai Wah Wu, Feb 25 2023

A065315 Smallest prime divisor of n-th primorial + (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 13, 23, 30047, 510529, 9699713, 127, 107, 433, 1093, 375569, 13082761331670077, 941879, 32589158477190044789, 1922760350154212639131, 4129, 92388407, 5879, 40729680599249024150621323549, 1783, 4903, 10279098043, 191, 131, 109, 163, 337, 20261, 673327, 6599, 181
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, prime(4)=7, sum=37, so a(3)=37.
		

Crossrefs

Programs

  • PARI
    a(n) = vecmin(factor(prod(i=1, n, prime(i)) + prime(n+1))[,1]); \\ Michel Marcus, Aug 29 2019

Formula

a(n) = A020639(A002110(n) + A000040(n+1)).
a(n) = A020639(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

More terms from Michel Marcus, Aug 29 2019

A065317 Largest prime divisor of the sum of the n-th primorial and the (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 17, 101, 30047, 510529, 9699713, 1427, 76829, 789077, 659863, 810104837, 13082761331670077, 652833094897, 32589158477190044789, 1922760350154212639131, 28406001782370300553, 770555057, 94904036422299534098897, 40729680599249024150621323549
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n = 4, 4th primorial = 210, prime(5) = 11, sum = 210 + 11 = 13 * 17, a(4) = 17.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=20},FactorInteger[#][[-1,1]]&/@(Total/@Thread[{FoldList[ Times,Prime[Range[nn]]],Prime[Range[nn]+1]}])] (* Harvey P. Dale, Jul 26 2020 *)
  • PARI
    a(n) = vecmax(factor(vecprod(primes(n)) + prime(n+1))[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A002110(n) + A000040(n+1)).
a(n) = A006530(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

Name clarified by Felix Fröhlich, May 26 2022
Showing 1-3 of 3 results.