A060885 a(n) = Sum_{j=0..10} n^j.
1, 11, 2047, 88573, 1398101, 12207031, 72559411, 329554457, 1227133513, 3922632451, 11111111111, 28531167061, 67546215517, 149346699503, 311505013051, 617839704241, 1172812402961, 2141993519227, 3780494710543, 6471681049901, 10778947368421, 17513875027111, 27824681019587
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
Crossrefs
Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
Programs
-
Magma
[(&+[n^j: j in [0..10]]): n in [0..20]]; // G. C. Greubel, Apr 15 2019
-
Maple
A060885 := proc(n) numtheory[cyclotomic](11,n) ; end proc: seq(A060885(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
-
Mathematica
Join[{1},Table[Total[n^Range[0,10]],{n,20}]] (* Harvey P. Dale, Jun 19 2011 *)
-
PARI
a(n) = n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 \\ Harry J. Smith, Jul 14 2009
-
PARI
a(n) = polcyclo(11, n); \\ Michel Marcus, Apr 06 2016
-
Sage
[sum(n^j for j in (0..10)) for n in (0..20)] # G. C. Greubel, Apr 15 2019
Formula
a(n) = n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1.
G.f.: (1+x^2*(1981+x*(66496+x*(534898+x*(1364848+x*(1233970+ x*(389104+x*(36829+x*(672+x)))))))))/(1-x)^11. - Harvey P. Dale, Jun 19 2011
Comments