cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060890 a(n) = n^8 + 1.

Original entry on oeis.org

1, 2, 257, 6562, 65537, 390626, 1679617, 5764802, 16777217, 43046722, 100000001, 214358882, 429981697, 815730722, 1475789057, 2562890626, 4294967297, 6975757442, 11019960577, 16983563042, 25600000001, 37822859362, 54875873537, 78310985282, 110075314177, 152587890626
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

a(n) = Phi_16(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Programs

Formula

a(0)=1, a(1)=2, a(2)=257, a(3)=6562, a(4)=65537, a(5)=390626, a(6)=1679617, a(7)=5764802, a(8)=16777217, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Mar 12 2013
Sum_{n>=0} 1/a(n) = 1/2 + Pi*((sqrt(2 + sqrt(2)) * sin(sqrt(2 + sqrt(2))*Pi) + sqrt(2 - sqrt(2)) * sinh(sqrt(2 - sqrt(2))*Pi)) / (cosh(sqrt(2 - sqrt(2))*Pi) - cos(sqrt(2 + sqrt(2))*Pi)) + (sqrt(2 - sqrt(2)) * sin(sqrt(2 - sqrt(2))*Pi) + sqrt(2 + sqrt(2)) * sinh(sqrt(2 + sqrt(2))*Pi)) / (cosh(sqrt(2 + sqrt(2))*Pi) - cos(sqrt(2 - sqrt(2))*Pi))) / 8 = 1.5040621333147995112929... . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} (-1)^n/a(n) = 1/2 + Pi*((sqrt(2 - sqrt(2)) * sin(sqrt(2 - sqrt(2))*Pi/2) - sqrt(2 + sqrt(2)) * sinh(sqrt(2 + sqrt(2))*Pi/2)) / (cos(sqrt(2 - sqrt(2))*Pi/2) + cosh(sqrt(2 + sqrt(2))*Pi/2)) - (sqrt(2 - sqrt(2)) * sin(sqrt(2 - sqrt(2))*Pi/2) + sqrt(2 + sqrt(2)) * sinh(sqrt(2 + sqrt(2))*Pi/2)) / (cos(sqrt(2 - sqrt(2))*Pi/2) - cosh(sqrt(2 + sqrt(2))*Pi/2)) + (sqrt(2 + sqrt(2)) * sin(sqrt(2 + sqrt(2))*Pi/2) - sqrt(2 - sqrt(2)) * sinh(sqrt(2 - sqrt(2))*Pi/2)) / (cos(sqrt(2 + sqrt(2))*Pi/2) + cosh(sqrt(2 - sqrt(2))*Pi/2)) - (sqrt(2 + sqrt(2)) * sin(sqrt(2 + sqrt(2))*Pi/2) + sqrt(2 - sqrt(2)) * sinh(sqrt(2 - sqrt(2))*Pi/2)) / (cos(sqrt(2 + sqrt(2))*Pi/2) - cosh(sqrt(2 - sqrt(2))*Pi/2)))/16 = 0.5037518217314416642671664241... . - Vaclav Kotesovec, Feb 14 2015
G.f.: (1-7*x+275*x^2+4237*x^3+15689*x^4+15563*x^5+4321*x^6+239*x^7+2*x^8)/ (1-x)^9. - Colin Barker, Apr 21 2012