cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060904 Largest power of 5 that divides n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001

Keywords

Comments

Also the largest power of 5 that divides the n-th Fibonacci number A000045(n).
Multiplicative with a(p^e) = 5^e if p = 5, else a(p^e) = 1. - Mitch Harris, Apr 19 2005
Also 5-adic value of 1/n, n >= 1. See the Mahler reference, definition on p. 7. This is a non-archimedean valuation. See Mahler, p. 10. Sometimes also called 5-adic absolute value. - Wolfdieter Lang, Jun 30 2014

Examples

			a(10) = 5 because 10 = 5 * 2.
		

References

  • Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.

Crossrefs

Programs

Formula

If n is not divisible by 5, then a(n) = 1. If n = 5^k * m where m is not divisible by 5, then a(n) = 5^k.
Dirichlet g.f.: zeta(s)*(5^s-1)/(5^s-5). - R. J. Mathar, Jul 12 2012
a(n) = 5^A112765(n). - Tom Edgar, Mar 22 2014
From Peter Bala, Feb 21 2019: (Start)
a(n) = gcd(n,5^n).
a(n) = n/A132739(n).
O.g.f.: x/(1 - x) + 4*Sum_{n >= 1} 5^(n-1)*x^(5^n)/ (1 - x^(5^n)). (End).
a(n) = (1/5)*(sigma(5*n) - sigma(n))/(sigma(5*n) - 5*sigma(n)), where sigma(n) = A000203(n). - Peter Bala, Jun 10 2022
Sum_{k=1..n} a(k) ~ (4/(5*log(5)))*n*log(n) + (3/5 + 4*(gamma-1)/(5*log(5)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001
Edited by Joerg Arndt and M. F. Hasler, Dec 29 2015