cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A243757 a(n) = Product_{i=1..n} A060904(i).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, 25, 25, 25, 25, 125, 125, 125, 125, 125, 625, 625, 625, 625, 625, 15625, 15625, 15625, 15625, 15625, 78125, 78125, 78125, 78125, 78125, 390625, 390625, 390625, 390625, 390625, 1953125, 1953125, 1953125, 1953125, 1953125, 9765625
Offset: 0

Views

Author

Tom Edgar, Jun 10 2014

Keywords

Comments

This is the generalized factorial for A060904.
a(0) = 1 as it represents the empty product.
a(n) is the largest power of 5 that divides n!, or the order of a 5-Sylow subgroup of the symmetric group of degree n. - David Radcliffe, Sep 03 2021

Crossrefs

Programs

  • Haskell
    a243757 n = a243757_list !! n
    a243757_list = scanl (*) 1 a060904_list
    -- Reinhard Zumkeller, Feb 04 2015
    
  • Mathematica
    Table[Product[5^IntegerExponent[k, 5], {k, 1, n}], {n, 0, 20}] (* G. C. Greubel, Dec 24 2016 *)
  • PARI
    a(n) = prod(k=1,n, 5^valuation(k,5)); \\ G. C. Greubel, Dec 24 2016
  • Sage
    S=[0]+[5^valuation(i, 5) for i in [1..100]]
    [prod(S[1:i+1]) for i in [0..99]]
    

Formula

a(n) = Product_{i=1..n} A060904(i).
a(n) = 5^(A027868(n)).

A264995 Bijective base-5 reverse: a(0) = 0; for n >= 1, a(n) = A030104(A132739(n)) * A060904(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 11, 16, 21, 10, 7, 12, 17, 22, 15, 8, 13, 18, 23, 20, 9, 14, 19, 24, 25, 26, 51, 76, 101, 30, 31, 56, 81, 106, 55, 36, 61, 86, 111, 80, 41, 66, 91, 116, 105, 46, 71, 96, 121, 50, 27, 52, 77, 102, 35, 32, 57, 82, 107, 60, 37, 62, 87, 112, 85, 42, 67, 92, 117, 110, 47, 72, 97, 122, 75, 28, 53, 78, 103, 40, 33
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Self-inverse permutation of nonnegative integers.

Crossrefs

Cf. similar sequences A057889 (base-2), A263273 (base-3), A264994 (base-4), A264979 (base-9).

Programs

Formula

a(0) = 0; for n >= 1, a(n) = A030104(A132739(n)) * A060904(n).
Other identities. For all n >= 0:
a(5*n) = 5*a(n).
A010873(a(n)) = 0 if and only if A010873(n) = 0 and it also seems that A010873(a(n)) = A010873(n) for all n.

A038500 Highest power of 3 dividing n.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 81
Offset: 1

Views

Author

Keywords

Comments

To construct the sequence: start with 1 and concatenate twice: 1,1,1 then tripling the last term gives: 1,1,3. Concatenating those 3 terms twice gives: 1,1,3,1,1,3,1,1,3, triple the last term -> 1,1,3,1,1,3,1,1,9. Concatenating those 9 terms twice gives: 1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,9, triple the last term -> 1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,9,1,1,3,1,1,3,1,1,27 etc. - Benoit Cloitre, Dec 17 2002
Also 3-adic value of 1/n, n >= 1. See the Mahler reference, definition on p. 7. This is a non-archimedean valuation. See Mahler, p. 10. Sometimes also called 3-adic absolute value. - Wolfdieter Lang, Jun 28 2014

References

  • Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.

Crossrefs

Programs

  • Haskell
    a038500 = f 1 where
       f y x = if m == 0 then f (y * 3) x' else y  where (x', m) = divMod x 3
    -- Reinhard Zumkeller, Jul 06 2014
    
  • Magma
    [3^Valuation(n,3): n in [1..100]]; // Vincenzo Librandi, Dec 29 2015
  • Maple
    A038500 := n -> 3^padic[ordp](n,3): # Peter Luschny, Nov 26 2010
  • Mathematica
    Flatten[{1,1,#}&/@(3^IntegerExponent[#,3]&/@(3*Range[40]))] (* or *) hp3[n_]:=If[Divisible[n,3],3^IntegerExponent[n,3],1]; Array[hp3,90] (* Harvey P. Dale, Mar 24 2012 *)
    Table[3^IntegerExponent[n, 3], {n, 100}] (* Vincenzo Librandi, Dec 29 2015 *)
  • PARI
    {a(n) = if( n<1, 0, 3^valuation(n, 3))};
    

Formula

Multiplicative with a(p^e) = p^e if p = 3, 1 otherwise. - Mitch Harris, Apr 19 2005
a(n) = n / A038502(n). Dirichlet g.f. zeta(s)*(3^s-1)/(3^s-3). - R. J. Mathar, Jul 12 2012
From Peter Bala, Feb 21 2019: (Start)
a(n) = gcd(n,3^n).
O.g.f.: x/(1 - x) + 2*Sum_{n >= 1} 3^(n-1)*x^(3^n)/ (1 - x^(3^n)). (End)
Sum_{k=1..n} a(k) ~ (2/(3*log(3)))*n*log(n) + (2/3 + 2*(gamma-1)/(3*log(3)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022

A132739 Largest divisor of n not divisible by 5.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 11, 12, 13, 14, 3, 16, 17, 18, 19, 4, 21, 22, 23, 24, 1, 26, 27, 28, 29, 6, 31, 32, 33, 34, 7, 36, 37, 38, 39, 8, 41, 42, 43, 44, 9, 46, 47, 48, 49, 2, 51, 52, 53, 54, 11, 56, 57, 58, 59, 12, 61, 62, 63, 64, 13, 66, 67, 68, 69, 14, 71, 72, 73, 74, 3, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2007

Keywords

Comments

A000265(a(n)) = a(A000265(n)) = A132740(n).
a(n) = A060791(n) when n is not divisible by 5. When n is divisible by 5 a(n) divides A060791(n). Tom Edgar, Feb 08 2014
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019

Examples

			From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (4*5)*G(x^5) - (4*25)*G(x^25) - (4*125)*G(x^125) - ..., where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (4/5)*H(x^5) - (4/25)*H(x^25) - (4/125)*H(x^125) - ..., where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (4/5^2)*L(x^5) - (4/25^2)*L(x^25) - (4/125^2)*L(x^125) - ..., where L(x) = Log(1/(1 - x)).
Also, Sum_{n >= 1} 1/a(n)*x^n = L(x) + (4/5)*L(x^5) + (4/5)*L(x^25) + (4/5)*L(x^125) + ....
(End)
		

Crossrefs

Programs

Formula

a(n) = n/A060904(n). Dirichlet g.f.: zeta(s-1)*(5^s-5)/(5^s-1). - R. J. Mathar, Jul 12 2012
a(n) = n/5^A112765(n). See A060904. - Wolfdieter Lang, Jun 18 2014
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,5^n).
O.g.f.: F(x) - 4*F(x^5) - 4*F(x^25) - 4*F(x^125) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers. More generally, for m >= 1,
Sum_{n >= 0} a(n)^m*x^n = F(m,x) - (5^m - 1)(F(m,x^5) + F(m,x^25) + F(m,x^125) + ...), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (5/12) * n^2. - Amiram Eldar, Nov 28 2022

A355582 a(n) is the largest 5-smooth divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 1, 12, 1, 2, 15, 16, 1, 18, 1, 20, 3, 2, 1, 24, 25, 2, 27, 4, 1, 30, 1, 32, 3, 2, 5, 36, 1, 2, 3, 40, 1, 6, 1, 4, 45, 2, 1, 48, 1, 50, 3, 4, 1, 54, 5, 8, 3, 2, 1, 60, 1, 2, 9, 64, 5, 6, 1, 4, 3, 10, 1, 72, 1, 2, 75, 4, 1, 6, 1, 80
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Crossrefs

Cf. A379005 (rgs-transform), A379006 (ordinal transform).

Programs

  • Mathematica
    a[n_] := Times @@ ({2, 3, 5}^IntegerExponent[n, {2, 3, 5}]); Array[a, 100]
  • PARI
    a(n) = 3^valuation(n, 3) * 5^valuation(n, 5) << valuation(n, 2);
    
  • Python
    from sympy import multiplicity as v
    def a(n): return 2**v(2, n) * 3**v(3, n) * 5**v(5, n)
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jul 08 2022

Formula

Multiplicative with a(p^e) = p^e if p <= 5 and 1 otherwise.
a(n) = A006519(n) * A038500(n) * A060904(n).
a(n) = 2^A007814(n) * 3^A007949(n) * 5^A112765(n).
a(n) = n / A165725(n).
Dirichlet g.f.: zeta(s)*(2^s-1)*(3^s-1)*(5^s-1)/((2^s-2)*(3^s-3)*(5^s-5)). - Amiram Eldar, Dec 25 2022
Sum_{k=1..n} a(k) ~ 2*n*log(n)^3 / (45*log(2)*log(3)*log(5)) + O(n*log(n)^2). - Vaclav Kotesovec, Apr 20 2025

A132741 Largest divisor of n having the form 2^i*5^j.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 16, 1, 2, 1, 20, 1, 2, 1, 8, 25, 2, 1, 4, 1, 10, 1, 32, 1, 2, 5, 4, 1, 2, 1, 40, 1, 2, 1, 4, 5, 2, 1, 16, 1, 50, 1, 4, 1, 2, 5, 8, 1, 2, 1, 20, 1, 2, 1, 64, 5, 2, 1, 4, 1, 10, 1, 8, 1, 2, 25, 4, 1, 2, 1, 80, 1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 32, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2007

Keywords

Comments

The range of this sequence, { a(n); n>=0 }, is equal to A003592. - M. F. Hasler, Dec 28 2015

Crossrefs

Cf. A379003 (ordinal transform), A379004 (rgs-transform).
Cf. also A355582.

Programs

  • Haskell
    a132741 = f 2 1 where
       f p y x | r == 0    = f p (y * p) x'
               | otherwise = if p == 2 then f 5 y x else y
               where (x', r) = divMod x p
    -- Reinhard Zumkeller, Nov 19 2015
    
  • Maple
    A132741 := proc(n) local f,a; f := ifactors(n)[2] ; a := 1; for f in ifactors(n)[2] do if op(1,f) =2 then a := a*2^op(2,f) ; elif op(1,f) =5 then a := a*5^op(2,f) ; end if; end do;a; end proc: # R. J. Mathar, Sep 06 2011
  • Mathematica
    a[n_] := SelectFirst[Reverse[Divisors[n]], MatchQ[FactorInteger[#], {{1, 1}} | {{2, }} | {{5, }} | {{2, }, {5, }}]&]; Array[a, 100] (* Jean-François Alcover, Feb 02 2018 *)
    a[n_] := Times @@ ({2, 5}^IntegerExponent[n, {2, 5}]); Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    A132741(n)=5^valuation(n,5)<M. F. Hasler, Dec 28 2015

Formula

a(n) = n / A132740(n).
a(A003592(n)) = A003592(n).
A051626(a(n)) = 0.
A007732(a(n)) = 1.
From R. J. Mathar, Sep 06 2011: (Start)
Multiplicative with a(2^e)=2^e, a(5^e)=5^e and a(p^e)=1 for p=3 or p>=7.
Dirichlet g.f. zeta(s)*(2^s-1)*(5^s-1)/((2^s-2)*(5^s-5)). (End)
a(n) = A006519(n)*A060904(n) = 2^A007814(n)*5^A112765(n). - M. F. Hasler, Dec 28 2015
Sum_{k=1..n} a(k) ~ n*(12*log(n)^2 + (24*gamma + 36*log(2) - 24)*log(n) + 24 - 24*gamma - 36*log(2) + 36*gamma*log(2) + 2*log(2)^2 - 18*log(5) + 18*gamma*log(5) + 27*log(2)*log(5) + 2*log(5)^2 + 18*log(5)*log(n) - 24*gamma_1)/(60*log(2)*log(5)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Jan 26 2023

A093348 A 5-fractal "castle" starting with 0.

Original entry on oeis.org

0, 1, 0, 1, 0, 5, 4, 5, 4, 5, 0, 1, 0, 1, 0, 5, 4, 5, 4, 5, 0, 1, 0, 1, 0, 25, 24, 25, 24, 25, 20, 21, 20, 21, 20, 25, 24, 25, 24, 25, 20, 21, 20, 21, 20, 25, 24, 25, 24, 25, 0, 1, 0, 1, 0, 5, 4, 5, 4, 5, 0, 1, 0, 1, 0, 5, 4, 5, 4, 5, 0, 1, 0, 1, 0, 25, 24, 25, 24, 25, 20, 21, 20, 21, 20, 25, 24
Offset: 1

Views

Author

Benoit Cloitre, Apr 26 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(i+1) * 5^IntegerExponent[i, 5], {i, 1, n-1}]; Array[a, 100] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    a(n)=if(n<2,0,5^floor(log(n-1)/log(5))-a(n-5^floor(log(n-1)/log(5))))

Formula

a(1) = 0, then a(n) = w(n) - a(n-w(n)) where w(n) = 5^floor(log(n-1)/log(5)).
a(n) = Sum_{i=1..n-1} (-1)^(i-1)*5^valuation(i, 5).
Conjecture: a(n+1) = (n mod 2) + Sum_{k=0..infinity} (4*5^k*(floor(n/5^(k+1)) mod 2)). - Charlie Neder, May 25 2019

A268354 Highest power of 7 dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 7
Offset: 1

Views

Author

Tom Edgar, Feb 02 2016

Keywords

Comments

The generalized binomial coefficients produced by this sequence provide an analog to Kummer's Theorem using arithmetic in base 7.

Examples

			Since 14 = 7 * 2, a(14) = 7. Likewise, since 7 does not divide 13, a(13) = 1.
		

Crossrefs

Programs

  • Magma
    [7^Valuation(n,7): n in [1..150]]; // Vincenzo Librandi, Feb 03 2016
    
  • Mathematica
    7^Table[IntegerExponent[n, 7], {n, 150}] (* Vincenzo Librandi, Feb 03 2016 *)
  • PARI
    a(n) = 7^valuation(n, 7) \\ Michel Marcus, Feb 05 2016
  • Sage
    [7^valuation(i, 7) for i in [1..100]]
    

Formula

a(n) = 7^valuation(n,7).
a(n) = 7^A214411(n).
Completely multiplicative with a(7) = 7, a(p) = 1 for prime p and p <> 7. - Andrew Howroyd, Jul 20 2018
From Peter Bala, Feb 21 2019: (Start)
a(n) = gcd(n,7^n).
a(n) = n/A242603(n).
O.g.f.: x/(1 - x) + 6*Sum_{n >= 1} 7^(n-1)*x^(7^n)/ (1 - x^(7^n)). (End)
Sum_{k=1..n} a(k) ~ (6/(7*log(7)))*n*log(n) + (4/7 + 6*(gamma-1)/(7*log(7)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022
Dirichlet g.f.: zeta(s)*(7^s-1)/(7^s-7). - Amiram Eldar, Jan 03 2023

Extensions

More terms from Antti Karttunen, Dec 22 2017

A268357 Highest power of 11 dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 121, 1
Offset: 1

Views

Author

Tom Edgar, Feb 02 2016

Keywords

Comments

The generalized binomial coefficients produced by this sequence provide an analog to Kummer's Theorem using arithmetic in base 11.
This first index where this differs from A109014 is 121; a(121) = 121 and A109014(121) = 11.

Examples

			Since 22 = 11 * 2, a(22) = 11. Likewise, since 11 does not divide 21, a(21) = 1.
		

Crossrefs

Programs

  • Magma
    [11^Valuation(n,11): n in [1..130]]; // Vincenzo Librandi, Feb 03 2016
  • Mathematica
    Table[11^IntegerExponent[n, 11], {n, 130}] (* Bruno Berselli, Feb 03 2016 *)
  • Sage
    [11^valuation(i, 11) for i in [1..130]]
    

Formula

a(n) = 11^valuation(n,11).
Completely multiplicative with a(11) = 11, a(p) = 1 for prime p and p<>11. - Andrew Howroyd, Jul 20 2018
From Peter Bala, Feb 21 2019: (Start)
a(n) = gcd(n,11^n).
O.g.f.: x/(1 - x) + 10*Sum_{n >= 1} 11^(n-1)*x^(11^n)/ (1 - x^(11^n)). (End)
Sum_{k=1..n} a(k) ~ (10/(11*log(11)))*n*log(n) + (6/11 + 10*(gamma-1)/(11*log(11)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022
Dirichlet g.f.: zeta(s)*(11^s-1)/(11^s-11). - Amiram Eldar, Jan 03 2023

A060865 a(n) is the exact power of 2 that divides the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 16, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 32, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 16, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 64, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 16, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 32, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 16, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 128, 1, 1, 2, 1
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), May 04 2001

Keywords

Examples

			a(12) = 16 because the 12th Fibonacci number is 144 and 144 = 9*16.
		

Crossrefs

Cf. A000045, A060904(n) = 5^A112765(n), A090740.

Programs

  • Maple
    seq(2^padic:-ordp(combinat:-fibonacci(n),2),n=1..100); # Robert Israel, Dec 28 2015
  • Mathematica
    Table[2^IntegerExponent[Fibonacci[n],2],{n,100}] (* Harvey P. Dale, Aug 04 2025 *)
  • PARI
    a(n)=2^valuation(fibonacci(n), 2) \\Michel Marcus, Jul 30 2013

Formula

If n is not divisible by 3 then a(n) = 1, if n = 3 * 2^k * (2m + 1) then a(n) = 2 if k=0 or 2^(k+2) if k>0.
a(n) = F(n) / A174883(n). - Franklin T. Adams-Watters, Jan 24 2012
a(n) = A006519(A000045(n)). - Michel Marcus, Jul 30 2013
a(3n) = 2^A090740(n). - Robert Israel, Dec 28 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001
Showing 1-10 of 16 results. Next