A060945 Number of compositions (ordered partitions) of n into 1's, 2's and 4's.
1, 1, 2, 3, 6, 10, 18, 31, 55, 96, 169, 296, 520, 912, 1601, 2809, 4930, 8651, 15182, 26642, 46754, 82047, 143983, 252672, 443409, 778128, 1365520, 2396320, 4205249, 7379697, 12950466, 22726483, 39882198, 69988378, 122821042, 215535903, 378239143, 663763424, 1164823609
Offset: 0
Examples
There are 18=a(6) compositions of 6 with the summand 2 frozen in place: (6), (51), (15), (4[2]), (33), (411), (141), (114), (3[2]1), (1[2]3), ([222]), (3111), (1311), (1131), (1113), ([22]11), ([2]1111), (111111). Equivalently, the position of the summand 2 does not affect the composition count. For example, (321)=(231)=(312) and (123)=(213)=(132).
Links
- Harry J. Smith, Table of n, a(n) for n = 0..500
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics 4 (2010), 119-135
- Michael Cohen and Yasuyuki Kachi (2024). Recurrence Relations Rhythm. In: Noll, T., Montiel, M., Gómez, F., Hamido, O.C., Besada, J.L., Martins, J.O. (eds) Mathematics and Computation in Music. MCM 2024. Lecture Notes in Computer Science, vol. 14639. Springer, Cham.
- K. Edwards, M. A. Allen, Strongly restricted permutations and tiling with fences, Disc. Appl. Math. 187 (2015) 82-90, Sect. 4.3
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,1).
Crossrefs
Programs
-
Haskell
a060945 n = a060945_list !! (n-1) a060945_list = 1 : 1 : 2 : 3 : 6 : zipWith (+) a060945_list (zipWith (+) (drop 2 a060945_list) (drop 3 a060945_list)) -- Reinhard Zumkeller, Mar 23 2012
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-x-x^2-x^4) )); // G. C. Greubel, Apr 09 2021 -
Maple
m:= 40; S:= series( 1/(1-x-x^2-x^4), x, m+1); seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Apr 09 2021
-
Mathematica
LinearRecurrence[{1,1,0,1}, {1,1,2,3}, 39] (* or *) CoefficientList[Series[1/(1-x-x^2-x^4), {x, 0, 38}], x] (* Michael De Vlieger, May 10 2017 *)
-
PARI
N=66; my(x='x+O('x^N)); Vec(1/(1-x-x^2-x^4)) /* Joerg Arndt, Oct 21 2012 */
-
Sage
def A060945_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/(1-x-x^2-x^4) ).list() A060945_list(40) # G. C. Greubel, Apr 09 2021
Formula
a(n) = a(n-1) + a(n-2) + a(n-4).
G.f.: 1 / (1 - x - x^2 - x^4).
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} C(i, n-k-i)*C(2*i-n+k, 3*k-2*n+2*i). - Paul Barry, Oct 24 2005
a(n) + a(n+1) = A005314(n+2). - R. J. Mathar, Jun 17 2020
Extensions
a(0) = 1 prepended by Joerg Arndt, Oct 21 2012
Comments