cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A237889 Decimal expansion of a constant related to A060985.

Original entry on oeis.org

2, 8, 2, 7, 6, 2, 8, 5, 0, 5, 9, 5, 3, 4, 4, 9, 0, 8, 7, 8, 0, 9, 5, 9, 5, 3, 4, 6, 5, 5, 3, 7, 0, 2, 5, 2, 1, 6, 8, 2, 2, 2, 7, 2, 4, 2, 8, 6, 0, 7, 5, 7, 3, 0, 0, 9, 3, 7, 6, 8, 0, 3, 0, 3, 3, 6, 0, 8, 4, 4, 9, 9, 0, 7, 4, 6, 6, 6, 1, 2, 6, 8, 2, 5, 4, 5, 6, 0, 9, 6, 9, 9, 6, 3, 6, 9, 3, 4, 8, 7, 2, 7, 3, 1, 2, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 15 2014

Keywords

Examples

			0.2827628505953449...
		

Crossrefs

Cf. A060985.

Formula

Equals lim n->infinity A060985(n)/2^n.

A061885 n + largest triangular number less than or equal to n.

Original entry on oeis.org

0, 2, 3, 6, 7, 8, 12, 13, 14, 15, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 35, 42, 43, 44, 45, 46, 47, 48, 56, 57, 58, 59, 60, 61, 62, 63, 72, 73, 74, 75, 76, 77, 78, 79, 80, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 132
Offset: 0

Views

Author

Henry Bottomley, May 12 2001

Keywords

Comments

A253607(a(n)) > 0. - Reinhard Zumkeller, Jan 05 2015
Also possible values of floor(x*floor(x)) for real x < 1. - Jianing Song, Feb 16 2021

Examples

			a(9) = 9+6 = 15;
a(10) = 10+10 = 20;
a(11) = 11+10 = 21.
		

Crossrefs

Cf. A060985.
Cf. A064801 (complement), A253607.

Programs

  • Haskell
    a061885 n = n + a057944 n  -- Reinhard Zumkeller, Feb 03 2012
    
  • Python
    from math import comb, isqrt
    def A061885(n): return n+comb((m:=isqrt(k:=n+1<<1))+(k>m*(m+1)),2) # Chai Wah Wu, Nov 09 2024

Formula

a(n) = n+A057944(n) = 2n-A002262(n) = n+[(sqrt(1+8*n)-1)/2]*[(sqrt(1+8*n)+1)/2]/2.
a(n) = A004201(n+1) - 1. - Franklin T. Adams-Watters, Jul 05 2009

A060984 a(1) = 1; a(n+1) = a(n) + (largest square <= a(n)).

Original entry on oeis.org

1, 2, 3, 4, 8, 12, 21, 37, 73, 137, 258, 514, 998, 1959, 3895, 7739, 15308, 30437, 60713, 121229, 242333, 484397, 967422, 1933711, 3865811, 7730967, 15459367, 30912128, 61814609, 123625653, 247235577, 494448306, 988888002, 1977738918, 3955408759, 7910812423
Offset: 1

Views

Author

R. K. Guy, May 11 2001

Keywords

Comments

Arises in analyzing "put-or-take" games (see Winning Ways, 484-486, 501-503), the prototype being Epstein's Put-or-Take-a-Square game.

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E26.

Crossrefs

Programs

  • Haskell
    a060984 n = a060984_list !! (n-1)
    a060984_list = iterate (\x -> x + a048760 x) 1
    -- Reinhard Zumkeller, Dec 24 2013
    
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - 1] + Floor[ Sqrt[ a[n - 1] ] ]^2; Table[ a[n], {n, 1, 40} ]
    RecurrenceTable[{a[1]==1,a[n]==a[n-1]+Floor[Sqrt[a[n-1]]]^2},a,{n,40}] (* Harvey P. Dale, Nov 19 2011 *)
    NestList[#+Floor[Sqrt[#]]^2&,1,40] (* Harvey P. Dale, Jan 22 2013 *)
  • PARI
    { default(realprecision, 100); for (n=1, 500, if (n==1, a=1, a+=floor(sqrt(a))^2); write("b060984.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 15 2009
    
  • Python
    from sympy import integer_nthroot
    A060984_list = [1]
    for i in range(10**3): A060984_list.append(A060984_list[-1]+integer_nthroot(A060984_list[-1],2)[0]**2) # Chai Wah Wu, Apr 02 2021
    
  • Python
    from math import isqrt
    from itertools import accumulate
    def f(an, _): return an + isqrt(an)**2
    print(list(accumulate([1]*36, f))) # Michael S. Branicky, Apr 02 2021

Formula

a(n+1) = a(n)+[sqrt(a(n))]^2 = a(n)+A061886(n) = a(n)+A048760(a(n)) = A061887(a(n)). - Henry Bottomley, May 12 2001
a(n) ~ c * 2^n, where c = 0.11511532187216693... (see A237888). - Vaclav Kotesovec, Feb 15 2014

Extensions

More terms from David W. Wilson, Henry Bottomley and Robert G. Wilson v, May 12 2001

A061883 Largest triangular number less than or equal to sum of previous terms with a(0)=1.

Original entry on oeis.org

1, 1, 1, 3, 6, 10, 21, 36, 78, 153, 300, 595, 1176, 2346, 4656, 9316, 18528, 37128, 74305, 148240, 296835, 593505, 1186570, 2372931, 4744740, 9489546, 18975880, 37953828, 75909681, 151806600, 303626403, 607243825, 1214480970, 2428940451
Offset: 0

Views

Author

Henry Bottomley, May 12 2001

Keywords

Comments

a(5)=10 since 1+1+1+3+6=12 and 10 is the largest triangular number less than or equal to this.

Programs

  • Haskell
    a061883 n = a061883_list !! n
    a061883_list = 1 : zipWith (-) (tail a060985_list) a060985_list
    -- Reinhard Zumkeller, Feb 03 2012
  • Mathematica
    ltn[n_]:=Module[{c=Floor[(Sqrt[8*n+1]-1)/2]},(c(c+1))/2]; nxt[{t_, a_}] := Module[ {m = ltn[t]}, {t + m, m}]; Transpose[NestList[nxt,{1,1},40]] [[2]] (* Harvey P. Dale, Feb 12 2016 *)

Formula

a(n) = A060985(n+1)-A060985(n) = A057944(A060985(n)) = A000217(A003056(A060985(n)))

A136311 Array read by antidiagonals: a(1) = 1; a(n+1) = a(n) + (largest k-gonal number <= a(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 6, 1, 2, 3, 4, 12, 1, 2, 3, 4, 8, 22, 1, 2, 3, 4, 5, 12, 43, 1, 2, 3, 4, 5, 10, 21, 79, 1, 2, 3, 4, 5, 6, 15, 37, 157, 1, 2, 3, 4, 5, 6, 12, 27, 73, 310, 1, 2, 3, 4, 5, 6, 7, 18, 49, 137, 610, 1, 2, 3, 4, 5, 6, 7, 14, 33, 84, 258, 1205, 1, 2, 3, 4, 5, 6, 7, 8, 21, 61
Offset: 1

Views

Author

Jonathan Vos Post, Mar 22 2008

Keywords

Examples

			The array begins:
==================================================================
n=..|.1.|.2.|.3.|.4.|..5.|..6.|..7.|..8.|...9.|..10.|..11.|...12.|
==================================================================
k=3.|.1.|.2.|.3.|.6.|.12.|.22.|.43.|.79.|.157.|.310.|.610.|.1205.|.A060985
k=4.|.1.|.2.|.3.|.4.|..8.|.12.|.21.|.37.|..73.|.137.|.258.|..514.|.A060984
k=5.|.1.|.2.|.3.|.4.|..5.|.10.|.15.|.27.|..49.|..84.|.154.|..299.|
k=6.|.1.|.2.|.3.|.4.|..5.|..6.|.12.|.18.|..33.|..61.|.106.|..197.|
k=7.|.1.|.2.|.3.|.4.|..5.|..6.|..7.|.14.|..21.|..39.|..73.|..128.|
k=8.|.1.|.2.|.3.|.4.|..5.|..6.|..7.|..8.|..16.|..24.|..45.|...85.|
k=9.|.1.|.2.|.3.|.4.|..5.|..6.|..7.|..8.|...9.|..18.|..27.|...51.|
==================================================================
		

Crossrefs

Programs

  • Maple
    A081422 := proc(k,n) n/2*((k-2)*n-k+4) ; end: A136311 := proc(k,n) option remember ; local aprev,n2 ; if n = 1 then RETURN(1) ; else aprev := A136311(k,n-1) ; for n2 from 0 do if A081422(k,n2) > aprev then RETURN( aprev+A081422(k,n2-1)); fi; od: fi ; end: for d from 4 to 20 do for n from 1 to d-3 do printf("%d,", A136311(d-n,n)) ; od: od: # R. J. Mathar, Jun 12 2008

Extensions

More terms from R. J. Mathar, Jun 12 2008
Showing 1-5 of 5 results.