A061002 As p runs through the primes >= 5, sequence gives { numerator of Sum_{k=1..p-1} 1/k } / p^2.
1, 1, 61, 509, 8431, 39541, 36093, 375035183, 9682292227, 40030624861, 1236275063173, 6657281227331, 2690511212793403, 5006621632408586951, 73077117446662772669, 4062642402613316532391, 46571842059597941563297, 8437878094593961096374353
Offset: 3
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 388 Problem 5.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 115.
Links
- Muniru A Asiru, Table of n, a(n) for n = 3..340
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
Programs
-
GAP
List(List(Filtered([5..80],p->IsPrime(p)),i->Sum([1..i-1],k->1/k)/i^2),NumeratorRat); # Muniru A Asiru, Dec 02 2018
-
Maple
A061002:=proc(n) local p; p:=ithprime(n); (1/p^2)*numer(add(1/i,i=1..p-1)); end proc; [seq(A061002(n),n=3..20)];
-
Mathematica
Table[Function[p, Numerator[Sum[1/k, {k, p - 1}]/p^2]]@ Prime@ n, {n, 3, 20}] (* Michael De Vlieger, Feb 04 2017 *)
-
PARI
a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k))/p^2; \\ Michel Marcus, Dec 03 2018
Comments