A061039 Numerator of 1/9 - 1/n^2.
0, 7, 16, 1, 40, 55, 8, 91, 112, 5, 160, 187, 8, 247, 280, 35, 352, 391, 16, 475, 520, 7, 616, 667, 80, 775, 832, 11, 952, 1015, 40, 1147, 1216, 143, 1360, 1435, 56, 1591, 1672, 65, 1840, 1927, 224, 2107, 2200, 85, 2392, 2491, 32, 2695, 2800, 323, 3016, 3127
Offset: 3
References
- J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 3..1000
- J. J. O'Connor and E. F. Robertson, Johannes Robert Rydberg
- Eric Weisstein's World of Physics, Balmer Formula
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Haskell
import Data.Ratio ((%), numerator) a061039 n = numerator $ 1%9 - 1%n ^ 2 -- Reinhard Zumkeller, Jan 03 2012
-
Maple
A061039:=n->numer(1/9-1/n^2): seq(A061039(n), n=3..80); # Wesley Ivan Hurt, Apr 12 2017
-
Mathematica
Table[Numerator[1/9 - 1/n^2], {n, 3, 60}] (* Stefan Steinerberger, Apr 16 2006 *)
-
PARI
a(n)=numerator(1/9-1/n^2) \\ Charles R Greathouse IV, Nov 20 2012
-
Python
from math import gcd def A061039(n): return (n**2-9)//gcd(n**2-9,9*n**2) # Chai Wah Wu, Apr 02 2021
Formula
a(n) <= n^2 - 9; if n is not divisible by 3 then a(n) = n^2 - 9. - Stefan Steinerberger, Apr 16 2006
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81) for n > 83. - Colin Barker, Oct 09 2016
a(n) = (n^2 - 9)/9^2 if n == 3 or 24 (mod 27), a(n) = (n^2 - 9)/(3*9) if n == 6 or 24 or 15 or 21 (mod 27), a(n) = (n^2 - 9)/9 if n == 0 (mod 9) and n^2 - 9 otherwise. From the period length 27 sequence gcd(n^2 - 9, 9*n^2). - Wolfdieter Lang, Mar 15 2018
Comments