A144454 First trisection of A061039.
0, 1, 8, 5, 8, 35, 16, 7, 80, 11, 40, 143, 56, 65, 224, 85, 32, 323, 40, 133, 440, 161, 176, 575, 208, 75, 728, 87, 280, 899, 320, 341, 1088, 385, 136, 1295, 152, 481, 1520, 533, 560, 1763, 616, 215, 2024, 235, 736, 2303, 800, 833, 2600, 901, 312, 2915, 336, 1045
Offset: 1
Examples
The rationals (n^2 - 1)/(9*n^2) begin: 0/1, 1/12, 8/81, 5/48, 8/75, 35/324, 16/147, 7/64, 80/729, 11/100, 40/363, 143/1296, 56/507, 65/588, ... - _Wolfdieter Lang_, Mar 15 2018
References
- L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, pp. 40, 41.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,1).
Programs
-
Maple
P:=n-> sum(1/((2*k-3)*(2*k-1)*(2*k+1)), k = 0 n); seq(numer(P(i))i,=1..50) # Gary Detlefs, Mar 15 2018
-
Mathematica
Numerator[Table[((n-1)(n+1))/(9n^2),{n,60}]] (* or *) LinearRecurrence[ {0,0,0,0, 0,0,0,0,3,0,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,1}, {0,1,8,5,8,35,16,7,80,11,40, 143,56,65,224,85,32,323,40,133,440,161,176,575,208,75,728}, 60] (* Harvey P. Dale, Jan 16 2013 *)
-
PARI
concat(0, Vec(x^2*(1 + 8*x + 5*x^2 + 8*x^3 + 35*x^4 + 16*x^5 + 7*x^6 + 80*x^7 + 11*x^8 + 37*x^9 + 119*x^10 + 41*x^11 + 41*x^12 + 119*x^13 + 37*x^14 + 11*x^15 + 83*x^16 + 7*x^17 + 16*x^18 + 35*x^19 + 8*x^20 + 5*x^21 + 8*x^22 + x^23 - x^25) / ((1 - x)^3*(1 + x + x^2)^3*(1 + x^3 + x^6)^3) + O(x^60))) \\ Colin Barker, Mar 15 2018
-
PARI
a(n) = numerator(1/9-1/(3*n)^2); \\ Altug Alkan, Mar 15 2018
-
Sage
[numerator((1 - 1/n^2)/9) for n in (1..100)] # G. C. Greubel, Mar 07 2022
Formula
a(n) = A061039(3*n).
For n > 27, a(n) = 3*a(n-9) - 3*a(n-18) + a(n-27). - Harvey P. Dale, Jan 16 2013
a(n) = (n^2 - 1)/9 if n == 1 (mod 9) or == 8 (mod 9). For other n: a(n) = (n^2 - 1)/3 if n == 1 (mod 3) or == 2(mod 3), and a(n) = n^2 - 1 if n == 0 (mod 3). The proof uses the first comment and gcd(n^2-1, n^2) = 1. - Wolfdieter Lang, Mar 15 2018
G.f.: x^2*(1 + 8*x + 5*x^2 + 8*x^3 + 35*x^4 + 16*x^5 + 7*x^6 + 80*x^7 + 11*x^8 + 37*x^9 + 119*x^10 + 41*x^11 + 41*x^12 + 119*x^13 + 37*x^14 + 11*x^15 + 83*x^16 + 7*x^17 + 16*x^18 + 35*x^19 + 8*x^20 + 5*x^21 + 8*x^22 + x^23 - x^25) / ((1 - x)^3*(1 + x + x^2)^3*(1 + x^3 + x^6)^3). - Colin Barker, Mar 15 2018
Extensions
Edited and extended by R. J. Mathar, Oct 24 2008
Comments