cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A145909 First 6-fold decimation of A061039. First bisection of A144454.

Original entry on oeis.org

0, 8, 8, 16, 80, 40, 56, 224, 32, 40, 440, 176, 208, 728, 280, 320, 1088, 136, 152, 1520, 560, 616, 2024, 736, 800, 2600, 312, 336, 3248, 1160, 1240, 3968, 1408, 1496, 4760, 560, 592, 5624, 1976, 2080, 6560, 2296, 2408, 7568, 880, 920
Offset: 0

Views

Author

Paul Curtz, Oct 24 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A061039(6*n+3).

A013656 a(n) = n*(9*n-2).

Original entry on oeis.org

0, 7, 32, 75, 136, 215, 312, 427, 560, 711, 880, 1067, 1272, 1495, 1736, 1995, 2272, 2567, 2880, 3211, 3560, 3927, 4312, 4715, 5136, 5575, 6032, 6507, 7000, 7511, 8040, 8587, 9152, 9735, 10336, 10955, 11592, 12247, 12920, 13611, 14320, 15047, 15792, 16555
Offset: 0

Views

Author

Keywords

Comments

For n>0, numbers such that sqrt(a(n)) has the continued fraction {k;[1,1,1,2k]}, where the part in [] is repeated and k is of the form 3m+2 (A016789). - Bruno Berselli, May 30 2013
For n >= 1, the continued fraction expansion of sqrt(4*a(n)) is [6n-1; {3, 3n-1, 3, 12n-2}]. - Magus K. Chu, Sep 18 2022

Crossrefs

Programs

Formula

a(n+1) = A144454(9*n+7) = A061039(27*n+21). - Paul Curtz, Nov 05 2008
a(n) = a(n-1) + 18*n - 11 with n>0, a(0)=0. - Vincenzo Librandi, Nov 22 2010
a(0)=0, a(1)=7, a(2)=32, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 07 2012
From G. C. Greubel, Mar 11 2022: (Start)
G.f.: x*(7 - 11*x)/(1-x)^3.
E.g.f.: x*(7 + 9*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = -(psi(7/9)+gamma)/2 = (A354640-A001620)/2 = 0.22000753... - R. J. Mathar, Apr 22 2024

A147296 a(n) = n*(9*n+2).

Original entry on oeis.org

0, 11, 40, 87, 152, 235, 336, 455, 592, 747, 920, 1111, 1320, 1547, 1792, 2055, 2336, 2635, 2952, 3287, 3640, 4011, 4400, 4807, 5232, 5675, 6136, 6615, 7112, 7627, 8160, 8711, 9280, 9867, 10472, 11095, 11736, 12395, 13072, 13767, 14480, 15211, 15960
Offset: 0

Views

Author

Paul Curtz, Nov 05 2008

Keywords

Comments

For n >= 1, the continued fraction expansion of sqrt(4*a(n)) is [6n; {1, 1, 1, 3n-1, 1, 1, 1, 12n}]. - Magus K. Chu, Sep 17 2022

Crossrefs

Equals first 9-fold decimation of A144454.

Programs

  • Mathematica
    Table[n(9n+2),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,11,40},50] (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    A147296(n) = n*(9*n + 2) \\ M. F. Hasler, Mar 01 2009

Formula

a(n) = n*(9*n + 2), as conjectured by V. Librandi. - M. F. Hasler, Mar 01 2009
G.f.: x*(11+7*x)/(1-x)^3. - Jaume Oliver Lafont, Aug 30 2009
a(n) = floor((3*n + 1/3)^2). - Reinhard Zumkeller, Apr 14 2010
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(11 + 9*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

More terms from M. F. Hasler, Mar 01 2009

A300295 Denominator of (1/3)*n*(n + 2)/((1 + 2*n)*(3 + 2*n)).

Original entry on oeis.org

1, 15, 105, 63, 99, 429, 195, 85, 969, 133, 483, 1725, 675, 783, 2697, 1023, 385, 3885, 481, 1599, 5289, 1935, 2115, 6909, 2499, 901, 8745, 1045, 3363, 10797, 3843, 4095, 13065, 4623, 1633, 15549, 1825, 5775, 18249, 6399, 6723, 21165, 7395, 2581, 24297, 2821, 8835, 27645, 9603, 9999, 31209, 10815, 3745
Offset: 0

Views

Author

Wolfdieter Lang, Mar 15 2018

Keywords

Comments

The corresponding numerators are given in A144454(n+1).
r(n) = A144454(n+1)/a(n) = Sum_{k=0..n-1} 1/(A(k)*A(k+1)*A(k+2)), with A(j) = 1 + 2*j = A005408(n) for n >= 1, and r(0) = 0. This can be written as r(n) = 1/12 - 1/(4*A(n)*A(n+1)) = (1/3)*n*(n + 2)/(A(n)*A(n+1)). See Jolley, p. 40/41, (209), and the general remark on p. 38, (201). The value of the infinite series is therefore 1/12.
For the proof that numerator(r(n)) = A144454(n+1) one checks the formula with (mod 9) and (mod 3) given there. E.g., if n = 1 + 9*k then r(n-1) = k*(2 + 9*k)/((1 + 6*k)*(1 + 18*k)) and numerator(r(n-1)) = k*(2 + 9*k) = ((n-1)^2 - )/9 as claimed, because this ratio for r(n-1) is in lowest terms.

Examples

			The series begins: 1/(1*3*5) + 1/(3*5*7) + 1/(5*7*9) + ...
The partial sums are r(n) = A144454(n+1)/a(n), n >= 1, and with r(0) = 0 they begin with 0/1, 1/15, 8/105, 5/63, 8/99, 35/429, 16/195, 7/85, 80/969, 11/133, 40/483, 143/1725, 56/675, 65/783, 224/2697, 85/1023, 32/385,...
		

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 2nd rev. ed., 1961, pp. 38, 40, 41.

Crossrefs

Cf. A005408, A144454(n+1) (numerators).

Programs

  • Mathematica
    Table[(n(n+2))/(3(1+2n)(3+2n)),{n,0,60}]//Denominator (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    a(n) = denominator((1/3)*n*(n + 2)/((1 + 2*n)*(3 + 2*n))); \\ Michel Marcus, Mar 15 2018

Formula

a(n) = denominator(r(n)), with r(n) = (1/3)*n*(n + 2)/((1 + 2*n)*(3 + 2*n)), n >= 0. r(n-1) = (1/3)*(n^2 - 1)/((2*n)^2 -1), n >= 1.
G.f. for r(n) = A144454(n+1)/a(n): G(x) = (1/12)*(1 - hypergeometric([1, 2], [5/2], -x/(1-x)))/(1-x) = ((-3 + 5*x)*sqrt(x)/sqrt(1 - x) + 3*sqrt(1 - x)*(1 - x)*arcsinh(sqrt(x)/sqrt(1 - x)))/(24*x*(1 - x)*sqrt(x)/sqrt(1 - x))
= ((-3 + 5*x)*sqrt(x/(1-x)) + 3*(1 - x)*sqrt(1 - x)*log((1 + sqrt(x))/sqrt(1 - x)))/(24*x*(1 - x)*sqrt(x/(1 - x))).

A147650 First trisection of A061040.

Original entry on oeis.org

1, 12, 81, 48, 75, 324, 147, 64, 729, 100, 363, 1296, 507, 588, 2025, 768, 289, 2916, 361, 1200, 3969, 1452, 1587, 5184, 1875, 676, 6561, 784, 2523, 8100, 2883, 3072, 9801, 3468, 1225, 11664, 1369, 4332, 13689, 4800, 5043
Offset: 1

Views

Author

Paul Curtz, Nov 09 2008

Keywords

Comments

a(n) gives the denominator of (n-1)*(n+1)/(9*n^2), for n >= 1. The numerator is given by A144454(n). - Wolfdieter Lang, Mar 16 2018

Crossrefs

Cf. A061040, A017198 (2nd trisection), A017234 (3d trisection).

Programs

  • Mathematica
    Table[Which[MemberQ[{1, 8}, Mod[n, 9]], n^2, Mod[n, 3] != 0, 3 n^2, True, 9 n^2], {n, 41}] (* Michael De Vlieger, Mar 16 2018 *)
  • PARI
    a(n) = denominator((n-1)*(n+1)/(9*n^2)); \\ Michel Marcus, Mar 17 2018

Formula

For n >= 1: a(n) = n^2 if n == 1 (mod 9) or == 8 (mod 9). For other n: a(n) = 3*n^2 if n == 1 (mod 3) or == 2 (mod 3), and a(n) = 9*n^2 if n == 0 (mod 3). From the denominator comment above. - Wolfdieter Lang, Mar 16 2018

Extensions

Offset changed from 0 to 1, and extended by Wolfdieter Lang, Mar 16 2018

A147651 First trisection of A028560.

Original entry on oeis.org

0, 27, 72, 135, 216, 315, 432, 567, 720, 891, 1080, 1287, 1512, 1755, 2016, 2295, 2592, 2907, 3240, 3591, 3960, 4347, 4752, 5175, 5616, 6075, 6552, 7047, 7560, 8091, 8640, 9207, 9792, 10395, 11016
Offset: 0

Views

Author

Paul Curtz, Nov 09 2008

Keywords

Comments

Nonnegative k such that k/9 + 1 is a square. - Bruno Berselli, Apr 10 2018

Crossrefs

Programs

Formula

a(n) = 9*n*(n+2).
a(n) = a(n-1) + 9*A144396(n) for n > 0.
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 9*x*(3 - x)/(1-x)^3.
E.g.f.: 9*x*(3 + x)*exp(x).
a(n) = 9*A005563(n) = 3*A067725(n) = A028560(3*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

More terms from Vincenzo Librandi, Nov 26 2010

A154629 Period 9: repeat [9, 3, 1, 3, 3, 1, 3, 9, 1].

Original entry on oeis.org

9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3
Offset: 0

Views

Author

Paul Curtz, Jan 13 2009

Keywords

Comments

Greatest common divisor of (n+1)^2-1 and (n+1)^2+8. - Bruno Berselli, Mar 08 2017

Crossrefs

Programs

  • Mathematica
    With[{n=5}, PadLeft[{}, 9n, {9,3,1,3,3,1,3,9,1}]] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    Vec((9 + 3*x + x^2 + 3*x^3 + 3*x^4 + x^5 + 3*x^6 + 9*x^7 + x^8) / ((1 - x)*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^100)) \\ Colin Barker, Dec 21 2017

Formula

a(n) = A147674(n)/9.
a(n) = A005563(n) / A144454(n+1) for n>0.
From Colin Barker, Dec 21 2017: (Start)
G.f.: (9 + 3*x + x^2 + 3*x^3 + 3*x^4 + x^5 + 3*x^6 + 9*x^7 + x^8) / ((1 - x)*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = a(n-9) for n>8.
(End)
Showing 1-7 of 7 results.