cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061142 Replace each prime factor of n with 2: a(n) = 2^bigomega(n), where bigomega = A001222, number of prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 8, 4, 4, 2, 8, 2, 4, 4, 16, 2, 8, 2, 8, 4, 4, 2, 16, 4, 4, 8, 8, 2, 8, 2, 32, 4, 4, 4, 16, 2, 4, 4, 16, 2, 8, 2, 8, 8, 4, 2, 32, 4, 8, 4, 8, 2, 16, 4, 16, 4, 4, 2, 16, 2, 4, 8, 64, 4, 8, 2, 8, 4, 8, 2, 32, 2, 4, 8, 8, 4, 8, 2, 32, 16, 4, 2, 16, 4, 4, 4, 16, 2, 16, 4, 8, 4, 4, 4
Offset: 1

Views

Author

Henry Bottomley, May 29 2001

Keywords

Comments

The inverse Möbius transform of A162510. - R. J. Mathar, Feb 09 2011

Examples

			a(100)=16 since 100=2*2*5*5 and so a(100)=2*2*2*2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(2^bigomega(n),n=1..95);
  • Mathematica
    Table[2^PrimeOmega[n], {n, 1, 95}] (* Jean-François Alcover, Jun 08 2013 *)
  • PARI
    a(n)=direuler(p=1,n,1/(1-2*X))[n] /* Ralf Stephan, Mar 28 2015 */
    
  • PARI
    a(n) = 2^bigomega(n); \\ Michel Marcus, Aug 08 2017

Formula

a(n) = Sum_{d divides n} 2^(bigomega(d)-omega(d)) = Sum_{d divides n} 2^(A001222(d) - A001221(d)). - Benoit Cloitre, Apr 30 2002
a(n) = A000079(A001222(n)), i.e., a(n)=2^bigomega(n). - Emeric Deutsch, Feb 13 2005
Totally multiplicative with a(p) = 2. - Franklin T. Adams-Watters, Oct 04 2006
Dirichlet g.f.: Product_{p prime} 1/(1-2*p^(-s)). - Ralf Stephan, Mar 28 2015
a(n) = A001316(A156552(n)). - Antti Karttunen, May 29 2017
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} 1/(1 - 1/(p^s - 1)^2). - Vaclav Kotesovec, Mar 14 2023