A061142 Replace each prime factor of n with 2: a(n) = 2^bigomega(n), where bigomega = A001222, number of prime factors counted with multiplicity.
1, 2, 2, 4, 2, 4, 2, 8, 4, 4, 2, 8, 2, 4, 4, 16, 2, 8, 2, 8, 4, 4, 2, 16, 4, 4, 8, 8, 2, 8, 2, 32, 4, 4, 4, 16, 2, 4, 4, 16, 2, 8, 2, 8, 8, 4, 2, 32, 4, 8, 4, 8, 2, 16, 4, 16, 4, 4, 2, 16, 2, 4, 8, 64, 4, 8, 2, 8, 4, 8, 2, 32, 2, 4, 8, 8, 4, 8, 2, 32, 16, 4, 2, 16, 4, 4, 4, 16, 2, 16, 4, 8, 4, 4, 4
Offset: 1
Examples
a(100)=16 since 100=2*2*5*5 and so a(100)=2*2*2*2.
Links
- R. Zumkeller, Table of n, a(n) for n = 1..10005
- R. J. Mathar, Survey of Dirichlet Series of Multiplicative Arithmetic Functions, arXiv:1106.4038 [math.NT], 2011-2012. See eq. (2.12).
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Programs
-
Maple
with(numtheory): seq(2^bigomega(n),n=1..95);
-
Mathematica
Table[2^PrimeOmega[n], {n, 1, 95}] (* Jean-François Alcover, Jun 08 2013 *)
-
PARI
a(n)=direuler(p=1,n,1/(1-2*X))[n] /* Ralf Stephan, Mar 28 2015 */
-
PARI
a(n) = 2^bigomega(n); \\ Michel Marcus, Aug 08 2017
Formula
a(n) = Sum_{d divides n} 2^(bigomega(d)-omega(d)) = Sum_{d divides n} 2^(A001222(d) - A001221(d)). - Benoit Cloitre, Apr 30 2002
Totally multiplicative with a(p) = 2. - Franklin T. Adams-Watters, Oct 04 2006
Dirichlet g.f.: Product_{p prime} 1/(1-2*p^(-s)). - Ralf Stephan, Mar 28 2015
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} 1/(1 - 1/(p^s - 1)^2). - Vaclav Kotesovec, Mar 14 2023
Comments