A061164 a(n) = (20*n)!n!/((10*n)!(7*n)!(4*n)!).
1, 5542680, 190818980609400, 7691041400616850556280, 330014847932376708502470210680, 14647137653300940580784413641872332680, 663999280578266939183818080578580843597787800, 30541460340748361003270983719744457382865889296237000
Offset: 0
References
- M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..22
- Jonathan W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., Vol. 79, Issue 2 (2009), 422-444.
- M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22 p. 11.
- Fernando Rodriguez Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT], 2007.
Programs
-
Magma
[Factorial(20*n)*Factorial(n)/(Factorial(10*n)*Factorial(7*n)*Factorial(4*n)): n in [0..8]]; // Vincenzo Librandi, Oct 26 2011
-
Maple
A061164 := proc(n) binomial(20*n,10*n)*binomial(10*n,3*n)/binomial(4*n,n) ; end proc: seq(A061164(n),n=0..10) ; # R. J. Mathar, Oct 26 2011
-
Mathematica
Table[((20n)!n!)/((10n)!(7n)!(4n)!),{n,0,10}] (* Harvey P. Dale, Oct 25 2011 *)
-
PARI
a(n)=(20*n)!*n!/(10*n)!/(7*n)!/(4*n)! \\ Charles R Greathouse IV, Apr 10 2012
Formula
One of the 52 sporadic integral factorial ratio sequences found by V. I. Vasyunin (see Bober, Table 2, Entry 43). The o.g.f. sum {n >= 1} a(n)*z^n is an algebraic function over the field of rational functions Q(z) (see Rodriguez-Villegas). - Peter Bala, Apr 10 2012
O.g.f. is a generalized hypergeometric function 8F7([1/20, 3/20, 7/20, 9/20, 11/20, 13/20, 17/20, 19/20], [1/7, 2/7, 3/7, 1/2, 4/7, 5/7, 6/7], ((2^22)*(5^10)*x)/7^7). - Karol A. Penson, Apr 11 2022
a(n) ~ 2^(22*n - 1) * 5^(10*n) / (sqrt(Pi*n) * 7^(7*n + 1/2)). - Vaclav Kotesovec, Aug 27 2024
Comments