cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061164 a(n) = (20*n)!n!/((10*n)!(7*n)!(4*n)!).

Original entry on oeis.org

1, 5542680, 190818980609400, 7691041400616850556280, 330014847932376708502470210680, 14647137653300940580784413641872332680, 663999280578266939183818080578580843597787800, 30541460340748361003270983719744457382865889296237000
Offset: 0

Views

Author

Richard Stanley, Apr 17 2001

Keywords

Comments

According to page 781 of the cited reference the generating function F(x) for a(n) is algebraic but not obviously so and the minimal polynomial satisfied by F(x) is quite large.

References

  • M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808.

Crossrefs

Programs

  • Magma
    [Factorial(20*n)*Factorial(n)/(Factorial(10*n)*Factorial(7*n)*Factorial(4*n)): n in [0..8]]; // Vincenzo Librandi, Oct 26 2011
    
  • Maple
    A061164 := proc(n)
            binomial(20*n,10*n)*binomial(10*n,3*n)/binomial(4*n,n) ;
    end proc:
    seq(A061164(n),n=0..10) ; # R. J. Mathar, Oct 26 2011
  • Mathematica
    Table[((20n)!n!)/((10n)!(7n)!(4n)!),{n,0,10}] (* Harvey P. Dale, Oct 25 2011 *)
  • PARI
    a(n)=(20*n)!*n!/(10*n)!/(7*n)!/(4*n)! \\ Charles R Greathouse IV, Apr 10 2012

Formula

One of the 52 sporadic integral factorial ratio sequences found by V. I. Vasyunin (see Bober, Table 2, Entry 43). The o.g.f. sum {n >= 1} a(n)*z^n is an algebraic function over the field of rational functions Q(z) (see Rodriguez-Villegas). - Peter Bala, Apr 10 2012
O.g.f. is a generalized hypergeometric function 8F7([1/20, 3/20, 7/20, 9/20, 11/20, 13/20, 17/20, 19/20], [1/7, 2/7, 3/7, 1/2, 4/7, 5/7, 6/7], ((2^22)*(5^10)*x)/7^7). - Karol A. Penson, Apr 11 2022
a(n) ~ 2^(22*n - 1) * 5^(10*n) / (sqrt(Pi*n) * 7^(7*n + 1/2)). - Vaclav Kotesovec, Aug 27 2024