A061171 One half of second column of Lucas bisection triangle (odd part).
3, 19, 79, 283, 940, 2982, 9171, 27581, 81557, 237995, 687158, 1966764, 5588259, 15780103, 44323195, 123920827, 345062176, 957403026, 2647935987, 7302634865, 20087869313, 55128445259, 150971982314
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- É. Czabarka, R. Flórez, L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
Programs
-
Magma
I:=[3,19,79,283]; [n le 4 select I[n] else 6*Self(n-1) - 11*Self(n-2) + 6*Self(n-3) - Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 21 2017
-
Mathematica
CoefficientList[Series[(1+x)(3-2x)/(1-3x+x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[{6,-11,6,-1},{3,19,79,283},30] (* Harvey P. Dale, Oct 11 2012 *)
-
PARI
my(x='x+O('x^30)); Vec((1+x)*(3-2*x)/(1-3*x+x^2)^2) \\ G. C. Greubel, Dec 21 2017
Formula
2*a(n) = A060924(n+1, 1).
G.f.: (1+x)*(3-2*x)/(1-3*x+x^2)^2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4), with a(0)=3, a(1)=19, a(2)=79, a(3)=283. - Harvey P. Dale, Oct 11 2012
a(n) = Fibonacci(2*n+4) + n*Lucas(2*n+3). - Lechoslaw Ratajczak, May 06 2020
Comments