A061227 a(n) = p + R(p) where R(p) is the digit reversal of n-th prime p.
4, 6, 10, 14, 22, 44, 88, 110, 55, 121, 44, 110, 55, 77, 121, 88, 154, 77, 143, 88, 110, 176, 121, 187, 176, 202, 404, 808, 1010, 424, 848, 262, 868, 1070, 1090, 302, 908, 524, 928, 544, 1150, 362, 382, 584, 988, 1190, 323, 545, 949, 1151, 565, 1171, 383
Offset: 0
Examples
a(4) = 14 = 7 + 7, 7 is the fourth prime; a(8) = 110 = 19 + 91, 19 is the eighth prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a061227 n = p + a004086 p where p = a000040 n -- Reinhard Zumkeller, Feb 04 2014
-
Maple
revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(10^(nops(L)-j)*L[j],j=1..nops(L)) end proc: seq(x+revdigs(x),x=select(isprime,[2,seq(i,i=3..1000,2); # Robert Israel, May 23 2016
-
Mathematica
#+FromDigits[Reverse[IntegerDigits[#]]]&/@Prime[Range[60]] (* Harvey P. Dale, Jul 13 2013 *)
Formula
Extensions
More terms from Patrick De Geest, Jun 04 2001