cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068396 n-th prime minus its reversal.

Original entry on oeis.org

0, 0, 0, 0, 0, -18, -54, -72, -9, -63, 18, -36, 27, 9, -27, 18, -36, 45, -9, 54, 36, -18, 45, -9, 18, 0, -198, -594, -792, -198, -594, 0, -594, -792, -792, 0, -594, -198, -594, -198, -792, 0, 0, -198, -594, -792, 99, -99, -495
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Comments

a(n) = 0 for n in A075807. - Michel Marcus, Sep 27 2017
All terms are divisible by 9. - Zak Seidov, Jun 05 2021

Examples

			a(10) = 29 - 92 = -63;
a(20) = 71 - 17 = 54.
		

Crossrefs

Programs

  • Haskell
    a068396 n = p - a004086 p  where p = a000040 n
    -- Reinhard Zumkeller, Feb 04 2014
    
  • Mathematica
    #-IntegerReverse[#]& /@ Prime[Range[50]] (* Harvey P. Dale, Dec 20 2012 *)
  • PARI
    a(n) = prime(n) - fromdigits(Vecrev(digits(prime(n)))); \\ Michel Marcus, Sep 27 2017
    
  • Python
    from sympy import prime
    def a(n): pn = prime(n); return pn - int(str(pn)[::-1])
    print([a(n) for n in range(1, 50)]) # Michael S. Branicky, Jun 05 2021

Formula

a(n) = A000040(n) - A004087(n).
a(n) = A056965(A000040(n)). - Michel Marcus, Sep 27 2017

A344871 a(n) is the least number that can be represented in exactly n ways as the sum of a prime and its digit reversal.

Original entry on oeis.org

1, 4, 44, 88, 1090, 3212, 4334, 2992, 5995, 4994, 7997, 9779, 5104, 11110, 11891, 10109, 11000, 10780, 108880, 110500, 252142, 278872, 296692, 293282, 308902, 287782, 411103, 289982, 466664, 281072, 457754, 398893, 298892, 462154, 517814, 494384, 299992, 707806, 471064, 476674, 487784, 467764
Offset: 0

Views

Author

J. M. Bergot and Robert Israel, May 31 2021

Keywords

Comments

If the reversal of p is another prime, p+reversal(p) and reversal(p)+p are both counted.
a(n) is the first number that occurs exactly n times in A061227.

Examples

			a(4) = 1090 because 1090 = 149+941 = 347+743 = 743+347 = 941+149, and this is the least number with exactly four such representations.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L,t;
    L:= convert(n,base,10);
    add(L[-t]*10^(t-1),t=1..nops(L));
    end proc:
    V:= Vector(10^6):
    p:= 1:
    do
      p:= nextprime(p);
      if p > 9*10^5 then break fi;
      r:= p+revdigs(p);
      if r <= 10^6 then V[r]:= V[r]+1 fi
    od:
    A:= Array(0..64):
    for i from 1 to 10^6 do
      if V[i] <= 64 and A[V[i]] = 0 then A[V[i]]:= i fi
    od:
    convert(A,list);
Showing 1-2 of 2 results.