A061228 a(1) = 2, a(n) = smallest number greater than n that is not coprime to n.
2, 4, 6, 6, 10, 8, 14, 10, 12, 12, 22, 14, 26, 16, 18, 18, 34, 20, 38, 22, 24, 24, 46, 26, 30, 28, 30, 30, 58, 32, 62, 34, 36, 36, 40, 38, 74, 40, 42, 42, 82, 44, 86, 46, 48, 48, 94, 50, 56, 52, 54, 54, 106, 56, 60, 58, 60, 60, 118, 62, 122, 64, 66, 66, 70, 68, 134, 70, 72, 72
Offset: 1
Keywords
Examples
a(9) = 12 as 10 and 11 are coprime to 9. a(11) = 22 as 11 is a prime.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a061228 n = n + a020639 n -- Reinhard Zumkeller, May 06 2015
-
Maple
for n from 1 to 150 do if n=1 then printf(`%d,`,2); fi: for k from n+1 to 2*n do if igcd(n,k)>1 then printf(`%d,`,k); break; fi: od: od: # alternative: 2, seq(t + min(numtheory:-factorset(t)), t = 2..1000); # Robert Israel, Oct 21 2015
-
Mathematica
Table[n+First@(First/@FactorInteger[n]),{n,200}] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *) nxt[{n_,a_}]:=Module[{c=n+2},While[CoprimeQ[n+1,c],c++];{n+1,c}]; NestList[nxt,{1,2},70][[;;,2]] (* Harvey P. Dale, May 21 2025 *)
-
PARI
a(n) = n + if(n == 1, 1, factor(n)[1,1]); \\ Amiram Eldar, Apr 10 2025
Formula
a(n) = A020639(n) + n.
a(2m) = 2m+2, a(p) = 2p if p is a prime.
a(n) = n + the smallest divisor of n that is larger than 1, for n >= 2.
a(p^k) = p^k + p if p is prime. - Robert Israel, Oct 21 2015
a(n) = A087349(n-1) + 1 for n >= 2. - Amiram Eldar, Apr 10 2025
Extensions
More terms from James Sellers, Apr 24 2001