A232325
Engel expansion of 1 to the base Pi.
Original entry on oeis.org
4, 12, 72, 2111, 14265, 70424, 308832, 4371476, 320218450, 1101000257, 14020589841, 102772320834, 963205851651, 5997003656523, 50649135127796, 640772902021920, 2101002284323870, 35029677728070645, 176996397541889098, 1433436623499128186
Offset: 0
Truncation F_5(z) = 1 - ( z/4 + z^2/(4*12) + z^3/(4*12*72) + z^4/(4*12*72*2111) + z^5/(4*12*72*2111*14265) ). The polynomial has a positive real zero at z = 3.14159 26535 (9...), which agrees with Pi to 10 decimal places.
Comparison of generalized Engel expansions of 1 to the base Pi.
A232325: Engel series expansion of 1 to the base Pi
1 = Pi/4 + Pi^2/(4*12) + Pi^3/(4*12*72) + Pi^4/(4*12*72*2111) + ....
A232326: Pierce series expansion of 1 to the base Pi
1 = Pi/3 - Pi^2/(3*69) + Pi^3/(3*69*310) - Pi^4/(3*69*310*1017) + - ....
Running the algorithm with the input values r = 1 and base -Pi produces the expansion
1 = Pi/3 - Pi^2/(3*70) - Pi^3/(3*70*740) + Pi^4/(3*70*740*6920) + - - + ....
Running the algorithm with the input values r = -1 and base -Pi produces the expansion
1 = Pi/4 + Pi^2/(4*11) - Pi^3/(4*11*73) - Pi^4/(4*11*73*560) + + - - ....
-
# Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1
map_iterate := proc(n,b,x) option remember;
if n = 0 then
x
else
-1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x))
end if
end proc:
# Define the terms of the expansion of x to the base b
a := n -> ceil(evalf(b/map_iterate(n,b,x))):
Digits:= 500:
# Choose values for x and b
x := 1: b:= Pi:
seq(a(n), n = 0..19);
A154956
Pierce expansion of 2/Pi.
Original entry on oeis.org
1, 2, 3, 5, 10, 71, 868, 1788, 7455, 44266, 54626, 74153, 224166, 390471, 1489304, 3737961, 22277163, 37201631, 113275744, 165029426, 2642368758, 3362202939, 5191046363, 8438525012, 36226438506, 40174126779, 125336047846, 531802867080, 599020778171
Offset: 0
1 - 1/2(1 - 1/3(1 - 1/5(1 - 1/10(1 - 1/71)))) = 2/(355/113).
-
Digits := 300: Pierce := proc(x) local resid,a,i,an ; resid := x ; a := [] ; for i from 1 do an := floor(1./resid) ; a := [op(a),an] ; resid := evalf(1.-an*resid) ; if ilog10( mul(i,i=a)) > 0.7*Digits then break ; fi ; od: RETURN(a) ; end: a060294 := evalf(2/Pi) ; Pierce(a060294) ; # R. J. Mathar, Jan 21 2009
-
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2/Pi, 7!], 50] (* G. C. Greubel, Nov 13 2016 *)
-
A154956(N=99)={localprec(N); my(c=2/Pi, d=c+c/10^N, a=[1\c]); while(a[#a]==1\d&&c=1-c*a[#a], d=1-d*a[#a]; a=concat(a, 1\c)); a[^-1]} \\ The optional argument is the precision used, approx. equal to the total number of digits in the result. - M. F. Hasler, Jul 04 2016
A014014
Alternating Engel expansion of Pi.
Original entry on oeis.org
3, 7, 112, 115, 157, 372, 432, 1340, 7034, 8396, 9200, 18846, 29558, 34050, 89754, 101768, 1361737, 48461857, 81164005, 145676139, 163820009, 182446527, 5021656281, 8401618827, 22255558907
Offset: 0
A061233 is a better version of this sequence.
A015884
A modified Pierce-type expansion for Pi: Pi = a(0) + Sum_{n>=1} (-1)^floor(n/2)/(Product_{i=1..n} a(i)).
Original entry on oeis.org
3, 7, 113, 4739, 46804, 134370, 614063, 1669512, 15474115, 18858140, 19180902, 41486462, 492988666, 1794101482, 34644610027, 48670872793, 97414216753, 138669015304, 195575194804, 543142431219, 3173502039447, 4968328076747
Offset: 0
Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Jun 02 2000
Pi = 3 + 1/7 - 1/(7*113) - 1/(7*113*4739) + 1/(7*113*4739*46804) + 1/(7*113*4739*46804*134370) - 1/(7*113*4739*46804*134370*614063) - 1/(7*113*4739*46804*134370*614063*1669512) + ...
From _M. F. Hasler_, Apr 09 2018: (Start)
Using the formulas given in the formula section, we get:
a(0) = 3, A(1) = Pi-3 = 0.14159..., a(1) = floor(1/A(1)) = floor(7.0626...) = 7,
A(2) = 1 - A(1)*a(1) = 0.00885..., a(2) = ceiling(1/A(2)) = 113,
A(3) = A(2)*a(2) - 1 = 0.000221..., a(3) = floor(1/A(3)) = 4739,
A(4) = 1 - A(3)*a(3) = 2.136585...e-5, a(4) = ceiling(1/A(2)) = 46804,
A(5) = A(4)*a(4) - 1 = 7.442125...e-7, a(5) = floor(1/A(3)) = 134370, ... (End)
-
{A=Pi-a=3; for(n=0,oo, print1(a","); A=abs(1-A*a=if(bittest(n,0),ceil(1/A),1\A)))} \\ M. F. Hasler, Apr 09 2018
Better description and more terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 28 2001
A140076
Pierce expansion of the cube root of 1/2.
Original entry on oeis.org
1, 4, 5, 7, 8, 18, 384, 7958, 14304, 16623, 18610, 20685, 72923, 883177, 1516692, 2493788, 2504069, 22881179, 110219466, 2241255405, 34982468090, 64356019489, 110512265214, 1142808349967, 3550630472116, 5238523454726, 7129035664265
Offset: 1
a(1) is 1 because the floor of 2^(1/3) is 1.
a(2)=4 because 1/(1-2^(-1/3)) is 4.8473221...
-
$MaxExtraPrecision = 80; x[1] = 2^(-1/3); a[n_] := a[n] = Floor[1/x[n]]; x[n_] := x[n] = 1 - a[n-1]*x[n-1]; Table[a[n], {n, 1, 27}] (* Jean-François Alcover, Dec 12 2011 *)
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/3), 7!], 25] (* G. C. Greubel, Nov 14 2016 *)
A232326
Pierce expansion of 1 to the base Pi.
Original entry on oeis.org
3, 69, 310, 1017, 36745, 214369, 966652, 11159821, 74039764, 550021544, 4481549430, 16543857917, 87205978613, 476981856953, 30989048525367, 203786458494160, 711639924282497, 3174772986229899, 29814569078896025, 100158574806804154
Offset: 0
-
# Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1
map_iterate := proc(n,b,x) option remember;
if n = 0 then
x
else
-1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x))
end if
end proc:
# Define the (signed) terms of the expansion of x to the base b
a := n -> ceil(evalf(b/map_iterate(n,b,x))):
Digits:= 500:
# Choose values for x and b
x := -1: b:= Pi:
seq(abs(a(n)), n = 0..19);
Showing 1-6 of 6 results.
Comments