A061265 Number of squares between n-th prime and (n+1)st prime.
0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
a(3) = 0 as there is no square between 5, the third prime and 7, the fourth prime. a(4) = 1, as there is a square (9) between the 4th prime 7 and the 5th prime 11.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Legendre's Conjecture
- Wikipedia, Legendre's conjecture
Programs
-
Haskell
a061265 n = a061265_list !! (n-1) a061265_list = map sum $ zipWith (\u v -> map a010052 [u..v]) a000040_list $ tail a000040_list -- Reinhard Zumkeller, Apr 15 2013
-
Mathematica
ns[{a_,b_}]:=Count[Range[a+1,b-1],?(IntegerQ[Sqrt[#]]&)]; ns/@ Partition[ Prime[Range[110]],2,1] (* _Harvey P. Dale, Mar 14 2015 *)
-
PARI
{ n=0; q=2; forprime (p=3, prime(2001), write("b061265.txt", n++, " ", floor(sqrt(p))-floor(sqrt(q))); q=p ) } \\ Harry J. Smith, Jul 20 2009
Formula
a(n) = floor(sqrt(prime(n+1))) - floor(sqrt(prime(n))). - Vladeta Jovovic, May 01 2003
Extensions
Extended by Patrick De Geest, Jun 05 2001
Offset changed from 0 to 1 by Harry J. Smith, Jul 20 2009
Comments