Original entry on oeis.org
1, 2, 16, 4096, 4294967296, 1208925819614629174706176
Offset: 0
A372705
Number of connected spanning subgraphs of the n-dimensional hypercube graph.
Original entry on oeis.org
1, 1, 5, 1083, 1239326145
Offset: 0
A373035
Number of edge subsets E of the n-dimensional hypercube graph such that E contains a path between two given antipodal nodes.
Original entry on oeis.org
1, 1, 7, 2160, 3127853061
Offset: 0
A373034
Triangle read by rows: T(n,k) is the number of edge subsets E of the n-dimensional hypercube graph such that E contains a path between two given nodes at Hamming distance k, 0 <= k <= n.
Original entry on oeis.org
1, 2, 1, 16, 9, 7, 4096, 2703, 2334, 2160, 4294967296, 3425712321, 3245350248, 3170502909, 3127853061
Offset: 0
Triangle begins:
1;
2, 1;
16, 9, 7;
4096, 2703, 2334, 2160;
4294967296, 3425712321, 3245350248, 3170502909, 3127853061;
...
A088322
Number of monotone functions f: 2^X -> 2^X where 2^X is the power set of an n-set X. Here f is monotone means that if A is a subset of B then f(A) is a subset of f(B).
Original entry on oeis.org
1, 3, 36, 8000, 796594176, 25039893834551321901, 230156231509903526722108570920314496786496, 478651764962008689839230538296564128023598629748415103570025502338085999191479922367872
Offset: 0
A085806
Permanent of the character table of the elementary abelian group (C_2)^n.
Original entry on oeis.org
0, 8, 384, 50692096, 6829323892021002240
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 24 2003
- I. M. Wanless, Permanents, Chapter 43 in Handbook of Linear Algebra (2nd ed.), CRC, (2014).
A365447
Number of nonempty choice functions on a set of n alternatives.
Original entry on oeis.org
1, 3, 189, 26254935, 392654823152462915625, 28032331438680332717218961936012273854096893310546875
Offset: 1
a(1) = 1 since 2^{1} = {{}, {1}} and there exists only one function f:2^{1}/{{}}->2^{1}/{{}} satisfying f(X) is a nonempty subset of any nonempty X in 2^A, i.e., f({1})={1}.
- F. Aleskerov, D. Bouyssou, and B. Monjardet, Utility, Maximization, Choice and Preference, Springer, 2007, pp. 28-31.
-
a[n_] := Product[(2^k - 1)^Binomial[n, k], {k, 1, n}]; Array[a, 6] (* Amiram Eldar, Oct 03 2023 *)
A377762
Number of edge cuts in the hypercube graph Q_n.
Original entry on oeis.org
0, 1, 11, 3013, 3055641151
Offset: 0
Showing 1-8 of 8 results.
Comments