A061397 Characteristic function sequence of primes multiplied componentwise by N, the natural numbers.
0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 0, 0, 23, 0, 0, 0, 0, 0, 29, 0, 31, 0, 0, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 0, 0, 47, 0, 0, 0, 0, 0, 53, 0, 0, 0, 0, 0, 59, 0, 61, 0, 0, 0, 0, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 0, 0, 83, 0, 0, 0, 0, 0, 89, 0, 0, 0, 0, 0
Offset: 1
Examples
If 1<n<=8, a(n)=0 iff it is even on interval [4,9); if 9<=n<=25, then a(n)=0 iff n is either even or multiple of 3 on interval [9,25) etc. - _Vladimir Shevelev_, Apr 24 2010
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime zeta function.
Programs
-
Haskell
a061397 n = (fromIntegral $ a010051 n) * n -- Reinhard Zumkeller, Mar 21 2014
-
Maple
seq(`if`(isprime(n),n,0), n=1..100); # Robert Israel, May 02 2016
-
Mathematica
If[PrimeQ@ #, #, 0] & /@ Range@ 94 (* or *) Replace[#, n_ /; ! PrimeQ@ n -> 0] & /@ Range@ 94 (* Michael De Vlieger, May 02 2016 *) Table[n*Floor[GCD[((n-1)! + 1)/n, 2]], {n, 2, 100}] (* José de Jesús Camacho Medina, Apr 30 2016 *)
-
PARI
a(n)=if(isprime(n),n) \\ Charles R Greathouse IV, Oct 29 2011
Formula
Dirichlet generating function: primezeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
a(1)=0; for n>=1, a(n)=0, if either p_1|n or p_2|n or...or p_i|n, when n is in [p_i^2,p_(i+1)^2), i=1,2,..], where p_i is the i-th prime; otherwise a(n)=n. - Vladimir Shevelev, Apr 24 2010
a(n) = n*floor(gcd(((n-1)! + 1)/n,2)). - José de Jesús Camacho Medina, Apr 30 2016
a(n) = n*floor(1/A001065(n)); for n>1. - José de Jesús Camacho Medina, Aug 07 2016
G.f.: x*f'(x), where f(x) = Sum_{k>=1} x^prime(k). - Ilya Gutkovskiy, Apr 10 2017
a(n) = (2*n-1)! mod n^2, by Wilson's theorem. - Thomas Ordowski, Dec 27 2017
Comments