cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340209 Constant whose decimal expansion is the concatenation of the largest n-digit cube A061435(n), for n = 1, 2, 3, ...

Original entry on oeis.org

8, 6, 4, 7, 2, 9, 9, 2, 6, 1, 9, 7, 3, 3, 6, 9, 7, 0, 2, 9, 9, 9, 9, 3, 8, 3, 7, 5, 9, 9, 8, 9, 7, 3, 4, 4, 9, 9, 7, 0, 0, 2, 9, 9, 9, 9, 9, 9, 3, 9, 4, 8, 2, 6, 4, 9, 9, 9, 6, 1, 9, 4, 6, 7, 2, 1, 9, 9, 9, 7, 0, 0, 0, 2, 9, 9, 9, 9, 9, 9, 9, 9, 5
Offset: 0

Views

Author

M. F. Hasler, Jan 01 2021

Keywords

Comments

The terms of sequence A340115 converge to this sequence of digits, and to this constant, up to powers of 10.

Examples

			The largest cube with 1, 2, 3, 4, ... digits is, respectively, 8 = 2^3, 64 = 4^3, 729 = 9^3, 9261 = 21^3, ..., cf. A061435.
Here we list the sequence of digits of these numbers: 8; 6, 4; 7, 2, 9; 9, 2, 6, 1; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.864729926...
		

Crossrefs

Cf. A061435 (largest n-digit cube), A340115 (has this as "limit"), A340208 (similar, with smallest n-digit cubes, limit of A215692), A340207 (same for squares, limit of A339978), A340220 (same for primes), A340222 (same for semiprimes), A340219 (similar, with smallest primes, limit of A215641), A340221 (similar, with smallest semiprimes, limit of A215647).
Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant).

Programs

  • PARI
    concat([digits(sqrtnint(10^k-1,3)^3)|k<-[1..14]]) \\ as seq. of digits
    c(N=20)=sum(k=1,N,.1^(k*(k+1)/2)*sqrtnint(10^k-1,3)^3) \\ as constant

Formula

c = 0.86472992619733697029999383759989734499700299999939482649996194672...
= Sum_{k >= 1} 10^(-k(k+1)/2)*floor(10^(k/3)-1)^3
a(-n(n+1)/2) = 9 for all n >= 3;

A061439 Largest number whose cube has n digits.

Original entry on oeis.org

2, 4, 9, 21, 46, 99, 215, 464, 999, 2154, 4641, 9999, 21544, 46415, 99999, 215443, 464158, 999999, 2154434, 4641588, 9999999, 21544346, 46415888, 99999999, 215443469, 464158883, 999999999, 2154434690, 4641588833, 9999999999
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Comments

a(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Examples

			a(5) = 46 because 46^3 = 97336 has 5 digits, while 47^3 = 103823 has 6 digits.
		

Crossrefs

a(n) is one more than the corresponding term of A018005. Cf. A061435.

Programs

  • Maple
    Digits := 100:
    A061439 := n->ceil(10^(n/3))-1:
    seq (A061439(n), n=1..40);
  • Mathematica
    t={}; i=0; Do[i=i+1; While[IntegerLength[i^3]<=n,i++]; AppendTo[t,i-1],{n,20}]; t (* Jayanta Basu, May 19 2013 *)

Formula

a(n) = ceiling(10^(n/3)) - 1. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001
Typo in Maple program fixed by Martin Renner, Jan 31 2011

A340115 Largest prime whose decimal expansion consists of the concatenation of a 1-digit cube, a 2-digit cube, a 3-digit cube, ..., and an n-digit cube, or 0 if there is no such prime.

Original entry on oeis.org

0, 827, 164729, 8642164913, 864729685979507, 864729926197336531441, 8647299261973369702994826809, 864729926197336970299980034443986977, 864729926197336970299993837599897344909853209, 8647299261973369702999938375998973449970029998036054027
Offset: 1

Views

Author

Bernard Schott, Dec 28 2020

Keywords

Comments

If a(n) exists it has A000217(n) = n*(n+1)/2 digits.
The similar smallest primes are in A215692.
We can conjecture that a(n) > 0 for all n > 1 and the terms converge to the concatenation of (c(1), c(2), c(3), ...) where c(k) is the largest k digit cube. The number of such primes between A215692(n) and a(n) is (0, 2, 2, 9, 177, 6909, 570166, ...). This is very close to what we expect given the number of concatenations of cubes of the respective length (product of 10^(k/3)-10^((k-1)/3), k=1..n) and the density of primes in that range according to the PNT. - M. F. Hasler, Dec 31 2020

Examples

			a(1) = 0 because no 1-digit cube {0, 1, 8} is prime.
a(2) = 827 because 827 is prime and is the concatenation of 8 = 2^3 and 27 = 3^3.
a(3) = 164729 because 827343, 827729, 864343 and 864729 are not primes and 164729, concatenation of 1 = 1^3, 64 = 4^3 and 729 = 9^3 is prime.
		

Crossrefs

Cf. A338968 (with concatenated primes), A339978 (with concatenated squares).

Programs

  • PARI
    A340115(n)=forvec(v=vector(n,k,-[sqrtnint(10^k-1,3),ceil(10^((k-1)/3))]),ispseudoprime(n=eval(concat([Str(-k^3)|k<-v])))&&return(n)) \\ M. F. Hasler, Dec 31 2020
  • Python
    from sympy import isprime
    from itertools import product
    def a(n):
      cubes = [str(k**3) for k in range(1, int((10**n)**(1/3))+2)]
      revcbs = [[k3 for k3 in cubes if len(k3)==i+1][::-1] for i in range(n)]
      for t in product(*revcbs):
        intt = int("".join(t))
        if isprime(intt): return intt
      return 0
    print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Dec 28 2020
    

Extensions

a(4)-a(10) from Michael S. Branicky, Dec 28 2020

A119273 Absolute value of the difference between largest square and largest cube each with n decimal digits.

Original entry on oeis.org

1, 17, 232, 540, 2520, 27702, 59869, 82657, 2947885, 5851737, 37568808, 297970002, 478867545, 5721476626, 29961646177, 65107456694, 570931518444, 2997997000002, 9607464857096, 53858918990529, 299956723113202, 1253472906066265, 2171966135005184
Offset: 1

Views

Author

Zak Seidov, May 12 2006

Keywords

Comments

a(n) = |A061433(n) - A061435(n)|, where A061433 and A061435 are the largest n-digit square and cube.

Crossrefs

Programs

  • Mathematica
    Table[Abs[Floor[Sqrt[10^n-1]]^2-Floor[Surd[10^n-1,3]]^3],{n,30}] (* Harvey P. Dale, Apr 24 2022 *)

Formula

a(n) = (ceiling(10^(n/2)) - 1)^2 - (ceiling(10^(n/3)) - 1)^3.

Extensions

Corrected, extended, and definition clarified by Harvey P. Dale, Apr 24 2022
Showing 1-4 of 4 results.