cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A018005 Smallest number whose cube has n digits.

Original entry on oeis.org

1, 3, 5, 10, 22, 47, 100, 216, 465, 1000, 2155, 4642, 10000, 21545, 46416, 100000, 215444, 464159, 1000000, 2154435, 4641589, 10000000, 21544347, 46415889, 100000000, 215443470, 464158884, 1000000000, 2154434691, 4641588834
Offset: 1

Views

Author

Keywords

Comments

With offset 0, ((cube root of 10) to the power n) rounded up.
From Carmine Suriano, Mar 14 2020: (Start)
The terms corresponding to n = (20,21); (38,39); (41,42); (56,57); (59,60); (77,78); (80,81) ... are such that the square of first term starts with the digits of second term, and the square of second term starts with the digits of the first. For example, a(38)^2 = 2154434690032^2 = 4641588833613.... and a(39)^2 = 4641588833613^2 = 2154434690032...
(End)

Examples

			a(5) = 22, 22^3 = 10648 has 5 digits, while 21^3 = 9261 has 4 digits.
		

Crossrefs

Cf. A061434, A061439, and powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), this sequence (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A130130 a(0)=0, a(1)=1, a(n)=2 for n >= 2.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Paul Curtz, Aug 01 2007

Keywords

Comments

a(n) is also total number of positive integers below 10^(n+1) requiring 9 positive cubes in their representation as sum of cubes (cf. Dickson, 1939).
A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + a(n) = A002283(n).
a(n) = number of obvious divisors of n. The obvious divisors of n are the numbers 1 and n. - Jaroslav Krizek, Mar 02 2009
Number of colors needed to paint n adjacent segments on a line. - Jaume Oliver Lafont, Mar 20 2009
a(n) = ceiling(n-th nonprimes/n) = ceiling(A018252(n)/A000027(n)) for n >= 1. Numerators of (A018252(n)/A000027(n)) in A171529(n), denominators of (A018252(n)/A000027(n)) in A171530(n). a(n) = A171624(n) + 1 for n >= 5. - Jaroslav Krizek, Dec 13 2009
a(n) is also the continued fraction for sqrt(1/2). - Enrique Pérez Herrero, Jul 12 2010
For n >= 1, a(n) = minimal number of divisors of any n-digit number. See A066150 for maximal number of divisors of any n-digit number. - Jaroslav Krizek, Jul 18 2010
Central terms in the triangle A051010. - Reinhard Zumkeller, Jun 27 2013
Decimal expansion of 11/900. - Elmo R. Oliveira, May 05 2024

Crossrefs

Programs

Formula

G.f.: x*(1+x)/(1-x) = x*(1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 20 2009
a(n) = A000005(n) - A070824(n) for n >= 1.
E.g.f.: 2*exp(x) - x - 2. - Stefano Spezia, May 19 2024

A114322 Largest number whose 4th power has n digits.

Original entry on oeis.org

1, 3, 5, 9, 17, 31, 56, 99, 177, 316, 562, 999, 1778, 3162, 5623, 9999, 17782, 31622, 56234, 99999, 177827, 316227, 562341, 999999, 1778279, 3162277, 5623413, 9999999, 17782794, 31622776, 56234132, 99999999, 177827941, 316227766, 562341325, 999999999, 1778279410
Offset: 1

Views

Author

Jonathan Vos Post, Feb 06 2006

Keywords

Comments

This is to 4th powers as A061439 is to cubes and A049416 is to squares.
a(n) + A186649(n) + A186651(n) + A186653(n) + A186655(n) + A186657(n) + A186659(n) + A186661(n) + A186663(n) + A186665(n) + A186667(n) + A186669(n) + A186671(n) + A186673(n) + A186675(n) + A186677(n) + A186680(n) + A186682(n) + A186684(n) = A002283(n).

Examples

			a(10) = 316 because 316^4 = 9971220736 which has 10 digits, while 317^4 = 10098039121 has 11 digits.
a(35) = 562341325 because 562341325^4 = 99999999864602459914272843469140625 has 35 digits, while 562341326^4 = 100000000575914225104884587789852176 has 36.
		

Crossrefs

Programs

  • Magma
    [Ceiling((10^n)^(1/4))-1: n in [1..40]]; // Vincenzo Librandi, Oct 01 2011
  • Mathematica
    Ceiling[(10^Range[50])^(1/4)] - 1 (* Paolo Xausa, Jul 30 2024 *)

Formula

a(n) = ceiling((10^n)^(1/4)) - 1.

A181354 Number of n-digit perfect cubes.

Original entry on oeis.org

2, 2, 5, 12, 25, 53, 116, 249, 535, 1155, 2487, 5358, 11545, 24871, 53584, 115444, 248715, 535841, 1154435, 2487154, 5358411, 11544347, 24871542, 53584111, 115443470, 248715414, 535841116, 1154434691, 2487154143, 5358411166
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

a(n) is also the total number of n-digit numbers requiring 1 positive cube in their representation as sum of cubes.
a(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).
Differs from A062941 only at n=1, because 0 is considered a 0-digit, not a 1-digit number here. - R. J. Mathar, Jul 09 2011

Crossrefs

Programs

  • Maple
    a:=n->ceil(10^(n/3))-ceil(10^((n-1)/3));
  • Mathematica
    With[{c = Range[4650000]^3}, Length[#]&/@Table[Select[c, IntegerLength[#] == n &], {n, 20}]] (* Harvey P. Dale, Feb 01 2011 *)
    Differences[Ceiling[10^(Range[0, 30]/3)]]

Formula

a(n) = A061439(n) - A061439(n-1).

Extensions

More terms from T. D. Noe, Feb 01 2011

A181404 Total number of positive integers below 10^n requiring 8 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

Also continued fraction expansion of (9+sqrt(229))/74. - Bruno Berselli, Sep 09 2011

Crossrefs

Programs

Formula

A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + a(n) + A130130(n) = A002283(n).
a(n) = 15 for n > 2. - Charles R Greathouse IV, Sep 09 2011
G.f.: 3*x^2*(1+4*x)/(1-x). - Bruno Berselli, Sep 09 2011
E.g.f.: 3*(5*(exp(x) - 1 - x) - 2*x^2). - Stefano Spezia, May 21 2024

Extensions

a(5)-a(7) from Lars Blomberg, May 04 2011

A181375 Total number of positive integers below 10^n requiring 2 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

2, 9, 41, 202, 938, 4354, 20330, 94625, 439959, 2045048, 9500746, 44124084, 204883131, 951202028, 4415710979, 20497646229, 95146359635
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A061439(n) + a(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Crossrefs

Cf. A003325.

Programs

  • Maple
    iscube:=proc(n) if root(n,3)=trunc(root(n,3)) then true; else false; fi; end:
    isA003325:=proc(n) local x,y3; if iscube(n) then false; else for x from 1 do y3:=n-x^3; if y3A003325(k) then i:=i+1; fi; od: return(i); end:
    for n from 1 do print(a(n)); od;
  • PARI
    a(n)=my(N=10^n,v=List(),x3);sum(x=1,sqrtnint(N-1,3),x3=x^3;sum(y=1, min(sqrtnint(N-x3,3),x), !ispower(x3+y^3,3) && listput(v,x3+y^3))); #vecsort(v,,8) \\ Charles R Greathouse IV, Oct 16 2013

Extensions

a(6)-a(12) from Lars Blomberg, May 04 2011
a(13)-a(17) from Hiroaki Yamanouchi, Jul 12 2014

A181377 Total number of positive integers below 10^n requiring 3 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 15, 122, 1128, 10678, 103421, 1017326, 10077684, 100294216
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A061439(n) + A181375(n) + a(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Crossrefs

Cf. A047702.

Extensions

a(5)-a(9) from Lars Blomberg, May 04 2011

A181379 Total number of positive integers below 10^n requiring 4 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 18, 242, 3343, 46683, 605489, 7221246, 80884939, 865304098
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A061439(n) + A181375(n) + A181377(n) + a(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Crossrefs

Cf. A047703.

Extensions

a(5)-a(9) from Lars Blomberg, May 04 2011

A181381 Total number of positive integers below 10^n requiring 5 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 21, 293, 3842, 38076, 282579, 1736822, 8938227, 33956667
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A061439(n) + A181375(n) + A181377(n) + A181379(n) + a(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n)

Crossrefs

Cf. A047704.

Extensions

a(5)-a(7) from Lars Blomberg, May 04 2011
a(8)-a(9) from Hiroaki Yamanouchi, Sep 23 2014

A181400 Total number of positive integers below 10^n requiring 6 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 18, 202, 1325, 3440, 3919, 3922, 3922, 3922
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + a(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n)

Crossrefs

Cf. A046040.

Extensions

a(5)-a(7) from Lars Blomberg, May 04 2011
a(8)-a(9) from Hiroaki Yamanouchi, Sep 23 2014
Showing 1-10 of 14 results. Next