cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A317614 a(n) = (1/2)*(n^3 + n*(n mod 2)).

Original entry on oeis.org

1, 4, 15, 32, 65, 108, 175, 256, 369, 500, 671, 864, 1105, 1372, 1695, 2048, 2465, 2916, 3439, 4000, 4641, 5324, 6095, 6912, 7825, 8788, 9855, 10976, 12209, 13500, 14911, 16384, 17985, 19652, 21455, 23328, 25345, 27436, 29679, 32000, 34481, 37044, 39775, 42592
Offset: 1

Views

Author

Stefano Spezia, Aug 01 2018

Keywords

Comments

Terms are obtained as partial sums in an algorithm for the generation of the sequence of the fourth powers (A000583). Starting with the sequence of the positive integers (A000027), it is necessary to delete every 4th term and to consider the partial sums of the obtained sequence, then to delete every 3rd term, and lastly to consider again the partial sums (see References).
a(n) is the trace of an n X n square matrix M(n) formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern as shown in the examples below. Specifically, M(n) is defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even, and it has det(M(n)) = 0 for n > 2 (proved).
From Saeed Barari, Oct 31 2021: (Start)
Also the sum of the entries in an n X n matrix whose elements start from 1 and increase as they approach the center. For instance, in case of n=5, the entries of the following matrix sum to 65:
1 2 3 2 1
2 3 4 3 2
3 4 5 4 3
2 3 4 3 2
1 2 3 2 1. (End)
The n X n square matrix of the preceding comment is defined as: A[i,j,n] = n - abs((n + 1)/2 - j) - abs((n + 1)/2 - i). - Stefano Spezia, Nov 05 2021

Examples

			For n = 1 the matrix M(1) is
  1
with trace Tr(M(1)) = a(1) = 1.
For n = 2 the matrix M(2) is
  1, 2
  4, 3
with Tr(M(2)) = a(2) = 4.
For n = 3 the matrix M(3) is
  1, 2, 3
  6, 5, 4
  7, 8, 9
with Tr(M(3)) = a(3) = 15.
		

References

  • Edward A. Ashcroft, Anthony A. Faustini, Rangaswami Jagannathan, and William W. Wadge, Multidimensional Programming, Oxford University Press 1995, p. 12.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 64.
  • G. Polya, Mathematics and Plausible Reasoning: Induction and analogy in mathematics, Princeton University Press 1990, p. 118.
  • Shailesh Shirali, A Primer on Number Sequences, Universities Press (India) 2004, p. 106.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.7.3 on pages 122-123.

Crossrefs

Cf. A000583, A000027, A186424 (first differences).
Cf. related to the M matrices: A074147 (antidiagonals), A130130 (rank), A241016 (row sums), A317617 (column sums), A322277 (permanent), A323723 (subdiagonal sums), A323724 (superdiagonal sums).

Programs

  • GAP
    a_n:=List([1..nmax], n->(1/2)*(n^3 + n*RemInt(n, 2)));
    
  • GAP
    List([1..50],n->(1/2)*(n^3+n*(n mod 2))); # Muniru A Asiru, Aug 24 2018
  • Magma
    [IsEven(n) select n^3/2 else (n^3+n)/2: n in [1..50]]; // Vincenzo Librandi, Aug 07 2018
    
  • Maple
    a:=n->(1/2)*(n^3+n*modp(n,2)): seq(a(n),n=1..50); # Muniru A Asiru, Aug 24 2018
  • Mathematica
    CoefficientList[Series[1/4 E^-x (1 + 3 E^(2 x) + 6 E^(2 x) x + 2 E^(2 x) x^2), {x, 0, 45}], x]*Table[(k + 1)!, {k, 0, 45}]
    CoefficientList[Series[-(1 + x^2)/((-1 + x)*(1 + x)^3), {x, 0, 45}], x]*Table[(k + 1)*(-1)^k, {k, 0, 45}]
    CoefficientList[Series[-(1 + x^2)/((-1 + x)^3*(1 + x)), {x, 0, 45}], x]*Table[(k + 1), {k, 0, 45}]
    From Robert G. Wilson v, Aug 01 2018: (Start)
    a[i_, j_, n_] := If[OddQ@ i, j + n (i - 1), n*i - j + 1]; f[n_] := Tr[Table[a[i, j, n], {i, n}, {j, n}]]; Array[f, 45]
    CoefficientList[Series[(x^4 + 2x^3 + 6x^2 + 2x + 1)/((x - 1)^4 (x + 1)^2), {x, 0, 45}], x]
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 4, 15, 32, 65, 108}, 45]
    (End)
  • Maxima
    a(n):=(1/2)*(n^3 + n*mod(n,2))$ makelist(a(n), n, 1, nmax);
    
  • PARI
    Vec(x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4) / ((1 - x)^4*(1 + x)^2) + O(x^40)) \\ Colin Barker, Aug 02 2018
    
  • PARI
    M(i, j, n) = if (i % 2, j + n*(i-1), n*i - j + 1);
    a(n) = sum(k=1, n, M(k, k, n)); \\ Michel Marcus, Aug 07 2018
    
  • R
    for (n in 1:nmax){
       a <- (n^3+n*n%%2)/2
       output <- c(n, a)
       cat(output, "\n")
    }
    (MATLAB and FreeMat)
    for(n=1:nmax); a=(n^3+n*mod(n,2))/2; fprintf('%d\t%0.f\n',n,a); end
    

Formula

a(n) = (1/2)*(A000578(n) + n*A000035(n)).
a(n) = A006003(n) - (n/2)*(1 - (n mod 2)).
a(n) = Sum_{k=1..n} T(n,k), where T(n,k) = ((n + 1)*k - n)*(n mod 2) + ((n - 1)*k + 1)*(1 - (n mod 2)).
E.g.f.: E(x) = (1/4)*exp(-x)*x*(1 + 3*exp(2*x) + 6*exp(2*x)*x + 2*exp(2*x)*x^2).
L.g.f.: L(x) = -x*(1 + x^2)/((-1 + x)*(1 + x)^3).
H.l.g.f.: LH(x) = -x*(1 + x^2)/((-1 + x)^3*(1 + x)).
Dirichlet g.f.: (1/2)*(Zeta(-3 + s) + 2^(-s)*(-2 + 2^s)*Zeta(-1 + s)).
From Colin Barker, Aug 02 2018: (Start)
G.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4) / ((1 - x)^4*(1 + x)^2).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
a(n) = n^3/2 for n even.
a(n) = (n^3+n)/2 for n odd. (End)
a(2*n) = A317297(n+1) + A001489(n). - Stefano Spezia, Dec 28 2018
Sum_{n>0} 1/a(n) = (1/2)*(-2*polygamma(0, 1/2) + polygamma(0, (1-i)/2)+ polygamma(0, (1+i)/2)) + zeta(3)/4 approximately equal to 1.3959168891658447368440622669882813003351669... - Stefano Spezia, Feb 11 2019
a(n) = (A000578(n) + A193356(n))/2. - Stefano Spezia, Jun 27 2022
a(n) = A210378(n-1)/n. - Stefano Spezia, Jul 15 2024

A331562 Number A(n,k) of sequences with k copies each of 1,2,...,n avoiding absolute differences between adjacent elements larger than one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 2, 1, 1, 1, 20, 12, 2, 1, 1, 1, 70, 92, 26, 2, 1, 1, 1, 252, 780, 506, 48, 2, 1, 1, 1, 924, 7002, 11482, 2288, 86, 2, 1, 1, 1, 3432, 65226, 284002, 135040, 10010, 148, 2, 1, 1, 1, 12870, 623576, 7426610, 8956752, 1543862, 41618, 250, 2, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 20 2020

Keywords

Comments

All columns are linear recurrences with constant coefficients and for k > 0 the order of the recurrence is bounded by 3*k-1. For k up to at least 17 this upper bound is exact. - Andrew Howroyd, May 16 2020
Row 2, the sequence of central binomial numbers A000984, satisfies the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r (see Meštrović, equation 39). This is also known to be true for row 3 (A103882) and row 4 (A177316). We conjecture that each row sequence of the table satisfies the same congruences. - Peter Bala, Oct 26 2024.

Examples

			A(2,2) = 6: 1122, 1212, 1221, 2112, 2121, 2211.
A(3,2) = 12: 112233, 112323, 112332, 121233, 123321, 211233, 233211, 321123, 323211, 332112, 332121, 332211.
A(2,3) = 20: 111222, 112122, 112212, 112221, 121122, 121212, 121221, 122112, 122121, 122211, 211122, 211212, 211221, 212112, 212121, 212211, 221112, 221121, 221211, 222111.
A(3,3) = 92: 111222333, 111223233, 111223323, 111223332, ..., 333221112, 333221121, 333221211, 333222111.
Square array A(n,k) begins:
  1, 1,  1,     1,       1,         1,           1, ...
  1, 1,  1,     1,       1,         1,           1, ...
  1, 2,  6,    20,      70,       252,         924, ...
  1, 2, 12,    92,     780,      7002,       65226, ...
  1, 2, 26,   506,   11482,    284002,     7426610, ...
  1, 2, 48,  2288,  135040,   8956752,   640160976, ...
  1, 2, 86, 10010, 1543862, 276285002, 54331653686, ...
		

Crossrefs

Columns k=0-9 give: A000012, A130130 (for n>0), A177282, A177291, A177298, A177301, A177304, A177307, A177310, A177313.
Main diagonal gives A331623.

Programs

  • Maple
    b:= proc(l, q) option remember; (n-> `if`(n<2, 1, add(
         `if`(l[j]=1, `if`(j in [1, n], b(subsop(j=[][], l),
         `if`(j=1, 0, n)), 0), b(subsop(j=l[j]-1, l), j)), j=
         `if`(q<0, 1..n, max(1, q-1)..min(n, q+1)))))(nops(l))
        end:
    A:= (n, k)-> `if`(k=0, 1, b([k$n], -1)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_, q_] := b[l, q] = With[{n = Length[l]}, If[n < 2, 1, Sum[
          If[l[[j]] == 1, If[j == 1 || j == n, b[ReplacePart[l, j -> Nothing],
          If[j == 1, 0, n]], 0], b[ReplacePart[l, j -> l[[j]] - 1], j]], {j,
          If[q < 0, Range[n], Range[Max[1, q - 1], Min[n, q + 1]]]}]]];
    A[n_, k_] := If[k == 0, 1, b[Table[k, {n}], -1]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)
  • PARI
    step(m,R)={my(M=matrix(3, m+1, q, p, q--; p--; sum(j=0, m-p-q, sum(i=max(p+j-#R+1, 2*p+q+j-m), p, R[1+q, 1+p+j-i] * binomial(p,i) * binomial(p+q+j-i-1, j) * binomial(m-1, 2*p+q+j-i-1))))); M[3,]+=2*M[2,]+M[1,]; M[2,]+=M[1,]; M}
    AdjPathsBySig(sig)={if(#sig<1, 1, my(R=[1;1;1]); for(i=1, #sig-1, R=step(sig[i], R)); my(m=sig[#sig]); sum(i=1, min(m, #R), binomial(m-1, i-1)*R[3,i]))}
    T(n,k) = {if(k==0, 1, AdjPathsBySig(vector(n,i,k)))} \\ Andrew Howroyd, May 16 2020

A158799 a(0)=1, a(1)=2, a(n)=3 for n >= 2.

Original entry on oeis.org

1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Jaume Oliver Lafont, Mar 27 2009

Keywords

Comments

a(n) = number of neighboring natural numbers of n (i.e., n, n - 1, n + 1). a(n) = number of natural numbers m such that n - 1 <= m <= n + 1. Generalization: If a(n,k) = number of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = a(n-1,k) + 1 = n + k for 0 <= n <= k, a(n,k) = a(n-1,k) = 2*k + 1 for n >= k + 1. - Jaroslav Krizek, Nov 18 2009
Partial sums of A130716; partial sums give A008486. - Jaroslav Krizek, Dec 06 2009
In atomic spectroscopy, a(n) is the number of P term symbols with spin multiplicity equal to n+1, i.e., there is one singlet-P term (n=0), there are two doublet-P terms (n=1), and there are three P terms for triple multiplicity (n=2) and higher (n>2). - A. Timothy Royappa, Mar 16 2012
a(n+1) is also the domination number of the n-Andrásfai graph. - Eric W. Weisstein, Apr 09 2016
Decimal expansion of 37/300. - Elmo R. Oliveira, May 11 2024
a(n+1) is also the domination number of the n X n rook complement graph. - Eric W. Weisstein, Mar 10 2025

Crossrefs

Programs

  • Mathematica
    PadRight[{1,2},120,{3}] (* or *) Min[#,3]&/@Range[120] (* Harvey P. Dale, Apr 08 2018 *)
  • PARI
    a(n)=if(n>1,3,if(n<0,0,n++))

Formula

G.f.: (1+x+x^2)/(1-x) = (1-x^3)/(1-x)^2.
a(n) = (n>=0)+(n>=1)+(n>=2).
a(n) = 1 + n for 0 <= n <= 1, a(n) = 3 for n >= 2. a(n) = A157532(n) for n >= 1. - Jaroslav Krizek, Nov 18 2009
E.g.f.: 3*exp(x) - x - 2 = x^2/(2*G(0)) where G(k) = 1 + (k+2)/(x - x*(k+1)/(x + k + 1 - x^4/(x^3 + (k+1)*(k+2)*(k+3)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2012
a(n) = min(n+1,3). - Wesley Ivan Hurt, Apr 16 2014
a(n) = 1 + A130130(n). - Elmo R. Oliveira, May 11 2024

Extensions

Corrected by Jaroslav Krizek, Dec 17 2009

A325188 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with origin-to-boundary graph-distance equal to k.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 3, 0, 0, 0, 2, 5, 0, 0, 0, 0, 2, 8, 1, 0, 0, 0, 0, 2, 9, 4, 0, 0, 0, 0, 0, 2, 12, 8, 0, 0, 0, 0, 0, 0, 2, 13, 15, 0, 0, 0, 0, 0, 0, 0, 2, 16, 23, 1, 0, 0, 0, 0, 0, 0, 0, 2, 17, 32, 5, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps right or down from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the maximum triangular partition contained inside the diagram.

Examples

			Triangle begins:
  1
  0  1
  0  2  0
  0  2  1  0
  0  2  3  0  0
  0  2  5  0  0  0
  0  2  8  1  0  0  0
  0  2  9  4  0  0  0  0
  0  2 12  8  0  0  0  0  0
  0  2 13 15  0  0  0  0  0  0
  0  2 16 23  1  0  0  0  0  0  0
  0  2 17 32  5  0  0  0  0  0  0  0
  0  2 20 43 12  0  0  0  0  0  0  0  0
  0  2 21 54 24  0  0  0  0  0  0  0  0  0
  0  2 24 67 42  0  0  0  0  0  0  0  0  0  0
  0  2 25 82 66  1  0  0  0  0  0  0  0  0  0  0
		

Crossrefs

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otb[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); forpart(p=n, my(w=#p); for(i=1, #p, w=min(w,#p-i+p[i])); r[w+1]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A368986(n).

A061439 Largest number whose cube has n digits.

Original entry on oeis.org

2, 4, 9, 21, 46, 99, 215, 464, 999, 2154, 4641, 9999, 21544, 46415, 99999, 215443, 464158, 999999, 2154434, 4641588, 9999999, 21544346, 46415888, 99999999, 215443469, 464158883, 999999999, 2154434690, 4641588833, 9999999999
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Comments

a(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Examples

			a(5) = 46 because 46^3 = 97336 has 5 digits, while 47^3 = 103823 has 6 digits.
		

Crossrefs

a(n) is one more than the corresponding term of A018005. Cf. A061435.

Programs

  • Maple
    Digits := 100:
    A061439 := n->ceil(10^(n/3))-1:
    seq (A061439(n), n=1..40);
  • Mathematica
    t={}; i=0; Do[i=i+1; While[IntegerLength[i^3]<=n,i++]; AppendTo[t,i-1],{n,20}]; t (* Jayanta Basu, May 19 2013 *)

Formula

a(n) = ceiling(10^(n/3)) - 1. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001
Typo in Maple program fixed by Martin Renner, Jan 31 2011

A171386 The characteristic function of 2 and 3: 1 if n is prime such that either n-1 or n+1 is prime, else 0.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 07 2009

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + a(n) = A052268(n).

Crossrefs

Programs

Formula

a(n) = A130130(n) - A130130(n-1), for n>0.

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010

A007424 a(n) = 1 if n is squarefree, otherwise 2.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[If[SquareFreeQ[n],1,2],{n,100}] (* Harvey P. Dale, Jul 09 2014 *)
  • MuPAD
    func(2-abs(numlib::moebius(n)), n):
    
  • PARI
    A007424(n) = (2-issquarefree(n)); \\ Antti Karttunen, Nov 18 2017

Formula

a(n) = 2 - A008966(n). - Antti Karttunen, Nov 18 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 - 6/Pi^2 = 1 + A229099. - Amiram Eldar, Sep 26 2022
a(n) = A051903(A007948(n)) = A130130(A051903(n)) for n >= 2. - Amiram Eldar, May 07 2024

A051010 Triangle T(m,n) giving of number of steps in the Euclidean algorithm for gcd(m,n) with 0<=m

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 2, 3, 2, 0, 1, 1, 1, 2, 2, 0, 1, 2, 2, 3, 3, 2, 0, 1, 1, 3, 1, 4, 2, 2, 0, 1, 2, 1, 2, 3, 2, 3, 2, 0, 1, 1, 2, 2, 1, 3, 3, 2, 2, 0, 1, 2, 3, 3, 2, 3, 4, 4, 3, 2, 0, 1, 1, 1, 1, 3, 1, 4, 2, 2, 2, 2, 0, 1, 2, 2, 2, 4, 2, 3, 5, 3, 3, 3, 2, 0, 1, 1, 3, 2, 3, 2, 1, 3, 4, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A049826.
Cf. A130130 (central terms).

Programs

  • Haskell
    a051010 n k = snd $ until ((== 0) . snd . fst)
                        (\((x, y), i) -> ((y, mod x y), i + 1)) ((n, k), 0)
    a051010_row n = map (a051010 n) [0..n-1]
    a051010_tabl = map a051010_row [1..]
    -- Reinhard Zumkeller, Jun 27 2013
  • Mathematica
    t[m_, n_] := For[r[-1]=m; r[0]=n; k=1, True, k++, r[k] = Mod[r[k-2], r[k-1]]; If[r[k] == 0, Return[k-1]]]; Table[ t[m, n] , {n, 1, 14}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Oct 25 2012 *)

A158411 Maximum number of colors required to paint a map having n regions.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Jaume Oliver Lafont, Mar 18 2009

Keywords

Comments

The generating function can be arranged to have four zeros at the fourth roots of unity. - Jaume Oliver Lafont, Mar 23 2009
Also, the arithmetic function uhat(n,4,3) as defined in A291041. - Robert Price, Aug 25 2017
Decimal expansion of 1111/90000. - Elmo R. Oliveira, May 06 2024

Crossrefs

Programs

  • Mathematica
    PadRight[Range[0, 3], 100, 4] (* Paolo Xausa, Aug 22 2024 *)
  • PARI
    a(n)=if(n<4,n,4)

Formula

G.f.: x*(1+x+x^2+x^3)/(1-x).
G.f.: x*(1-x^4)/(1-x)^2. - Jaume Oliver Lafont, Mar 20 2009
G.f.: Product_{k=0..3} (1-I^k*x)*x/(1-x)^2. - Jaume Oliver Lafont, Mar 23 2009
a(n) = A130130(n) + A130130(n-2). - Jaume Oliver Lafont, Mar 24 2009
a(n) = min(n,4). - Wesley Ivan Hurt, Apr 16 2014
E.g.f.: 4*exp(x) - 4 - 3*x - x^2 - x^3/6. - Stefano Spezia, May 19 2024

A181404 Total number of positive integers below 10^n requiring 8 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

Also continued fraction expansion of (9+sqrt(229))/74. - Bruno Berselli, Sep 09 2011

Crossrefs

Programs

Formula

A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + a(n) + A130130(n) = A002283(n).
a(n) = 15 for n > 2. - Charles R Greathouse IV, Sep 09 2011
G.f.: 3*x^2*(1+4*x)/(1-x). - Bruno Berselli, Sep 09 2011
E.g.f.: 3*(5*(exp(x) - 1 - x) - 2*x^2). - Stefano Spezia, May 21 2024

Extensions

a(5)-a(7) from Lars Blomberg, May 04 2011
Showing 1-10 of 25 results. Next