A130130 a(0)=0, a(1)=1, a(n)=2 for n >= 2.
0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0
Links
- Leonard Eugene Dickson, All integers except 23 and 239 are sums of eight cubes, Bulletin of the American Mathematical Society 45 (1939), p. 588-591.
- Eric Weisstein's World of Mathematics, Waring's Problem.
- Index entries for linear recurrences with constant coefficients, signature (1).
Crossrefs
Programs
-
Haskell
a130130 = min 2 a130130_list = 0 : 1 : repeat 2 -- Reinhard Zumkeller, Jun 27 2013
-
Mathematica
A130130[0]:=0; A130130[1]:=1; A130130[n_]:=2; (* Enrique Pérez Herrero, Jul 12 2010 *) A130130[n_]:=ContinuedFraction[Sqrt[1/2],n+1][[n+1]] (* Enrique Pérez Herrero, Jul 12 2010 *) Join[{0, 1},LinearRecurrence[{1},{2},96]] (* Ray Chandler, Sep 23 2015 *) PadRight[{0,1},120,{2}] (* Harvey P. Dale, Sep 15 2022 *)
-
PARI
a(n)=min(n,2) \\ Charles R Greathouse IV, Jun 01 2011
Formula
G.f.: x*(1+x)/(1-x) = x*(1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 20 2009
E.g.f.: 2*exp(x) - x - 2. - Stefano Spezia, May 19 2024
Comments