cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A269129 Number A(n,k) of sequences with k copies each of 1,2,...,n avoiding the pattern 12...n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 5, 1, 0, 0, 1, 43, 23, 1, 0, 0, 1, 374, 1879, 119, 1, 0, 0, 1, 3199, 173891, 102011, 719, 1, 0, 0, 1, 26945, 16140983, 117392909, 7235651, 5039, 1, 0, 0, 1, 224296, 1474050783, 142951955371, 117108036719, 674641325, 40319, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2016

Keywords

Examples

			Square array A(n,k) begins:
  0,   0,      0,         0,            0,               0, ...
  1,   0,      0,         0,            0,               0, ...
  1,   1,      1,         1,            1,               1, ...
  1,   5,     43,       374,         3199,           26945, ...
  1,  23,   1879,    173891,     16140983,      1474050783, ...
  1, 119, 102011, 117392909, 142951955371, 173996758190594, ...
		

Crossrefs

Programs

  • Maple
    g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])*
          binomial(n-1, l[-1]-1)+add(f(sort(subsop(j=l[j]
          -1, l))), j=1..nops(l)-1))(add(i, i=l))
        end:
    f:= l->(n->`if`(n=0, 1, `if`(l[1]=0, 0, `if`(n=1 or l[-1]=1, 1,
        `if`(n=2, binomial(l[1]+l[2], l[1])-1, g(l))))))(nops(l)):
    A:= (n, k)-> (k*n)!/k!^n - f([k$n]):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    b:= proc(k, p, j, l, t) option remember;
          `if`(k=0, (-1)^t/l!, `if`(p<0, 0, add(b(k-i, p-1,
           j+1, l+i*j, irem(t+i*j, 2))/(i!*p!^i), i=0..k)))
        end:
    A:= (n, k)-> (n*k)!*(1/k!^n-b(n, k-1, 1, 0, irem(n, 2))*n!):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 03 2016
  • Mathematica
    b[k_, p_, j_, l_, t_] := b[k, p, j, l, t] = If[k == 0, (-1)^t/l!, If[p < 0, 0, Sum[b[k-i, p-1, j+1, l + i j, Mod[t + i j, 2]]/(i! p!^i), {i, 0, k}]] ];
    A[n_, k_] := (n k)! (1/k!^n - b[n, k-1, 1, 0, Mod[n, 2]] n!); Table[ Table[ A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 07 2016, after Alois P. Heinz *)

Formula

A(n,k) = A089759(k,n) - A047909(k,n) = A187783(n,k) - A047909(k,n).

A103882 a(n) = Sum_{i=0..n} C(n+1,i)*C(n-1,i-1)*C(2n-i,n).

Original entry on oeis.org

1, 2, 12, 92, 780, 7002, 65226, 623576, 6077196, 60110030, 601585512, 6078578508, 61908797418, 634756203018, 6545498596110, 67830161708592, 705951252118284, 7375213677918294, 77310179609631564, 812839595630249540, 8569327862277434280, 90562666977432643862
Offset: 0

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Comments

Number of permutations of n copies of 1..3 with all adjacent differences <= 1 in absolute value. - R. H. Hardin, May 06 2010 [Cf. A177316. - Peter Bala, Jan 14 2020]

Crossrefs

Equals A103881(n, n).
Row n=3 of A331562.

Programs

  • Magma
    [1] cat [&+[Binomial(n+1, i)*Binomial(n-1, i-1) * Binomial(2*n-i, n): i in [0..n]]:n in  [1..21]]; // Marius A. Burtea, Jan 19 2020
    
  • Magma
    [&+[Binomial(n, k)^2*Binomial(n+k-1, k): k in [0..n]]:n in  [0..21]]; // Marius A. Burtea, Jan 19 2020
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          ((n-1)*(55*n^3-143*n^2+102*n-24)*a(n-1)+
          n*(5*n-3)*(n-2)^2*a(n-2))/((n-1)*(5*n-8)*n^2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 29 2015
    # Alternative:
    a := n -> hypergeom([-n, -n, n], [1, 1], 1):
    seq(simplify(a(n)), n=0..21); # Peter Luschny, Jan 19 2020
  • Mathematica
    Drop[Table[Sum[Sum[Multinomial[r, g, n + 1 - r - g] Binomial[n - 1,n - r] Binomial[n - 1, n - g], {g, 1, n}], {r, 1, n}], {n, 0, 18}], 1] (* Geoffrey Critzer, Jun 29 2015 *)
    Table[Sum[Binomial[n+1,k]Binomial[n-1,k-1]Binomial[2n-k,n],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    a(n) = polcoef(pollegendre(n, (1 + x)/(1 - x)) + O(x^(n+1)), n); \\ Michel Marcus, Dec 20 2020
    
  • Python
    def A103882(n):
        if n == 0: return 1
        m, g = 1, 0
        for k in range(n+1):
            g += m*n//(n+k)
            m *= (n+k+1)*(n-k)**2
            m //= (k+1)**3
        return g # Chai Wah Wu, Oct 04 2022
    
  • SageMath
    def A103882(n): return hypergeometric([-n,-n,n], [1,1], 1).simplify()
    [A103882(n) for n in range(31)] # G. C. Greubel, May 24 2023

Formula

a(n) = (A005258(n-1) + 3*A005258(n))/5 (Apéry numbers). - Mark van Hoeij, Jul 13 2010
n^2*(n-1)*(5*n-8)*a(n) = (n-1)*(55*n^3-143*n^2+102*n-24)*a(n-1) + n*(n-2)^2*(5*n-3)*a(n-2). - Alois P. Heinz, Jun 29 2015
a(n) ~ phi^(5*n + 3/2) / (2*Pi*5^(1/4)*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 21 2019
From Peter Bala, Jan 14 2020: (Start)
a(n) = Sum_{k = 0..n} C(n,k)^2*C(n+k-1,k). Cf. A005258.
For any prime p >= 5, a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all positive integers n and k (follows from known supercongruences satisfied by the Apéry numbers A005258 - see Straub, Example 3.4). (End)
a(n) = hypergeometric([-n, -n, n], [1, 1], 1). - Peter Luschny, Jan 19 2020
From Peter Bala, Dec 19 2020: (Start)
a(n) = Sum_{k = 1..n} C(n,k)*C(n+k,k)*C(n-1,k-1) for n >= 1.
a(n) = [x^n] P(n, (1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Cf. A156554. (End)
a(n) = Sum_{k = 0..n} binomial(2*n-k-1,n-k)*binomial(n,k)^2. Cf. A108628. - Peter Bala, Mar 24 2022
From Peter Bala, Apr 15 2022: (Start)
a(-n) = (-1)^n*A352654(n).
a(n) = [x^n*y^n*z^(n-1)] 1/(1 - x - y - z + x*z + y*z - x*y*z) for n >= 1.
a(n) = B(n,n,n-1) in the notation of Straub, see equation 24.
a(n) = [x^n*y^n*z^(n-1)] (x + y + z)^n*(x + y)^n*(y + z)^(n-1) for n >= 1. (End)
D-finite with recurrence 9*n^2*a(n) -3*(31*n^2-27*n+6)*a(n-1) -2*(37*n^2-138*n+108)*a(n-2) -(n-3)*(17*n-56)*a(n-3) -(n-4)^2*a(n-4) = 0. - R. J. Mathar, Aug 01 2022
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n-1, n-k)*binomial(n+k, k)*binomial(n+k-1, k). - Peter Bala, Aug 13 2023
a(n) = Sum_{k = 0..n} (-1)^k * binomial(n+1, k)*binomial(2*n-k, n-k)^2. - Peter Bala, Oct 05 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 29 2015

A275784 Number A(n,k) of up-down sequences with k copies each of 1,2,...,n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 4, 5, 1, 1, 0, 1, 12, 53, 16, 1, 1, 0, 1, 36, 761, 936, 61, 1, 1, 0, 1, 120, 12661, 87336, 25325, 272, 1, 1, 0, 1, 400, 229705, 9929000, 18528505, 933980, 1385, 1, 1, 0, 1, 1400, 4410665, 1267945800, 17504311533, 6376563600, 45504649, 7936, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2016

Keywords

Examples

			A(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
A(3,2) = 4: 121323, 132312, 231213, 231312.
A(3,3) = 12: 121313232, 121323132, 121323231, 131213232, 132312132, 132323121, 231213132, 231213231, 231312132, 231323121, 232312131, 232313121.
A(2,4) = 1: 12121212.
Square array A(n,k) begins:
  1,   1,      1,          1,              1,              1, ...
  1,   1,      0,          0,              0,              0, ...
  1,   1,      1,          1,              1,              1, ...
  1,   2,      4,         12,             36,            120, ...
  1,   5,     53,        761,          12661,         229705, ...
  1,  16,    936,      87336,        9929000,     1267945800, ...
  1,  61,  25325,   18528505,    17504311533, 19126165462061, ...
  1, 272, 933980, 6376563600, 59163289699260, ...
		

Crossrefs

Columns k=0-3 give: A000012, A000111, A275801, A276636.
Rows n=2-5 give: A000012, A241530, A036916, A276637.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(l=[], 1, `if`(irem(add(i,
          i=l), 2)=0, add(b(i, subsop(i=`if`(l[i]=1, [][], l[i]-1),
          l)), i=n+1..nops(l)), add(b(i-`if`(l[i]=1, 1, 0), subsop(
          i=`if`(l[i]=1, [][], l[i]-1), l)), i=1..n-1)))
        end:
    A:= (n, k)->`if`(k=0, 1, b(`if`(irem(k*n, 2)=0, 0, n+1), [k$n])):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, l_List] := b[n, l] = If[l == {}, 1, If[EvenQ[Total[l]], Sum[b[i, ReplacePart[l, i -> If[l[[i]] == 1, Nothing, l[[i]]-1]]], {i, n+1, Length[l]}], Sum[b[i - If[l[[i]] == 1, 1, 0], ReplacePart[l, i -> If[l[[i]] == 1, Nothing, l[[i]]-1]]], {i, 1, n-1}]]]; A[n_, k_] := If[k == 0, 1, b[If[EvenQ[k*n], 0, n+1], Array[k&, n]]]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 23 2017, adapted from Maple *)

A177316 Number of permutations of n copies of 1..4 with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 2, 26, 506, 11482, 284002, 7426610, 201922730, 5650739930, 161686253810, 4708709084026, 139111173397066, 4159013698117618, 125595645802182818, 3825428523179727266, 117382025506323434506, 3625185567639373456090, 112597953571519245194770
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

See A103882 and A177317 through A177328 for the number of permutations of n copies of 1..k (for different values of k) with adjacent differences restricted in size. We conjecture that all these sequences satisfy the congruences A(n*p^k) == A(n*p^(k-1)) ( mod p^(3*k) ) for all positive integers n and k and any prime p >= 5. - Peter Bala, Jan 16 2020

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 2, 26][n+1],
           (3*((105*n^4-356*n^3+402*n^2-208*n+43)*a(n-1)
          -(105*n^4-904*n^3+2868*n^2-3932*n+1930)*a(n-2))
          +(9*n-11)*(n-3)^3*a(n-3))/((9*n-16)*n^3))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jan 22 2020
    A177316 := n -> hypergeom([-n, -n, n, n], [1, 1, 1], 1):
    seq(simplify(A177316(n)), n = 0..17); # Peter Luschny, Mar 27 2023
  • Mathematica
    a[n_] := HypergeometricPFQ[{-n, -n, n, n}, {1, 1, 1}, 1];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, May 28 2023, after Peter Luschny *)
  • Python
    def A177316(n):
        if n == 0: return 1
        m, g = 1, 0
        for k in range(n+1):
            g += m*n**2//(n+k)**2
            m *= ((n+k+1)*(n-k))**2
            m //= (k+1)**4
        return g # Chai Wah Wu, Oct 03 2022

Formula

From Peter Bala, Jan 14 2020: (Start)
Conjecture: a(n) = (1/3)*( A005259(n) + A005259(n-1) ).
Equivalently, a(n) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k-1,k)^2. Cf. A103882. If true, then the sequence satisfies the recurrence a(n) = (2*(102*n^6 - 612*n^5 + 1462*n^4 - 1768*n^3 + 1143*n^2 - 382*n+52) * a(n-1) - (2*n-1)*(3*n^2 - 3*n+1) * (n-2)^3 * a(n-2)) / (n^3*(2*n - 3) * (3*n^2 - 9*n+7)) and the supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all positive integers n and k and any prime p >= 5. [added Apr 18 2022: assuming the recurrence given in the Maple program below is correct then these conjectures are true.] (End)
a(n) = 2*A352653(n) for n >= 1. - Peter Bala, Apr 18 2022
a(n) = hypergeom([-n, -n, n, n], [1, 1, 1], 1). - Peter Luschny, Mar 27 2023
a(n) ~ (1 + sqrt(2))^(4*n) / (2^(5/4) * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 29 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 20 2020

A208673 Number of words A(n,k), either empty or beginning with the first letter of the k-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 10, 1, 1, 1, 1, 9, 37, 35, 1, 1, 1, 1, 15, 163, 309, 126, 1, 1, 1, 1, 25, 640, 3593, 2751, 462, 1, 1, 1, 1, 41, 2503, 36095, 87501, 25493, 1716, 1, 1, 1, 1, 67, 9559, 362617, 2336376, 2266155, 242845, 6435, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (n*k-1)-step walks on k-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that the absolute difference of the dimension indices used in consecutive steps is <= 1.
All rows are linear recurrences with constant coefficients and for n > 0 the order of the recurrence is bounded by 2*n-1. For n up to at least 20 this upper bound is exact. - Andrew Howroyd, Feb 22 2022

Examples

			A(0,0) = A(n,0) = A(0,k) = 1: the empty word.
A(2,3) = 5:
  +------+   +------+   +------+   +------+   +------+
  |aabbcc|   |aabcbc|   |aabccb|   |ababcc|   |abccba|
  +------+   +------+   +------+   +------+   +------+
  |122222|   |122222|   |122222|   |112222|   |111112|
  |001222|   |001122|   |001112|   |011222|   |011122|
  |000012|   |000112|   |000122|   |000012|   |001222|
  +------+   +------+   +------+   +------+   +------+
  |xx    |   |xx    |   |xx    |   |x x   |   |x    x|
  |  xx  |   |  x x |   |  x  x|   | x x  |   | x  x |
  |    xx|   |   x x|   |   xx |   |    xx|   |  xx  |
  +------+   +------+   +------+   +------+   +------+
Square array A(n,k) begins:
  1,  1,    1,     1,       1,         1,           1, ..
  1,  1,    1,     1,       1,         1,           1, ..
  1,  1,    3,     5,       9,        15,          25, ..
  1,  1,   10,    37,     163,       640,        2503, ..
  1,  1,   35,   309,    3593,     36095,      362617, ..
  1,  1,  126,  2751,   87501,   2336376,    62748001, ..
  1,  1,  462, 25493, 2266155, 164478048, 12085125703, ..
		

Crossrefs

Columns k=0+1, 2-4 give: A000012, A088218, A208675, A212334.
Rows n=0+1, 2-3 give: A000012, A001595, A208674.
Main diagonal gives A351759.
Cf. A208879 (cyclic alphabet), A331562.

Programs

  • Maple
    b:= proc(t, l) option remember; local n; n:= nops(l);
         `if`(n<2 or {0}={l[]}, 1,
         `if`(l[t]>0, b(t, [seq(l[i]-`if`(i=t, 1, 0), i=1..n)]), 0)+
         `if`(t0,
                      b(t+1, [seq(l[i]-`if`(i=t+1, 1, 0), i=1..n)]), 0)+
         `if`(t>1 and l[t-1]>0,
                      b(t-1, [seq(l[i]-`if`(i=t-1, 1, 0), i=1..n)]), 0))
        end:
    A:= (n, k)-> `if`(n=0 or k=0, 1, b(1, [n-1, n$(k-1)])):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[t_, l_List] := b[t, l] = Module[{n = Length[l]}, If[n < 2 || {0} == Union[l], 1, If[l[[t]] > 0, b[t, Table[l[[i]] - If[i == t, 1, 0], {i, 1, n}]], 0] + If[t < n && l[[t + 1]] > 0, b[t + 1, Table[l[[i]] - If[i == t + 1, 1, 0], {i, 1, n}]], 0] + If[t > 1 && l[[t - 1]] > 0, b[t - 1, Table[l[[i]] - If[i == t - 1, 1, 0], {i, 1, n}]], 0]]]; A[n_, k_] := If[n == 0 || k == 0, 1, b[1, Join[{n - 1}, Array[n&, k - 1]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
  • PARI
    F(u)={my(n=#u); sum(k=1, n,u[k]*binomial(n-1,k-1))}
    step(u, c)={my(n=#u); vector(n, k, sum(i=max(0, 2*k-c-n), k-1, sum(j=0, n-2*k+i+c, u[k-i+j]*binomial(n-1, 2*k-1-c-i+j)*binomial(k-1, k-i-1)*binomial(k-i+j-c, j) ))) }
    R(n,k)={my(r=vector(n+1), u=vector(k), v=vector(k)); u[1]=v[1]=r[1]=r[2]=1; for(n=3, #r, u=step(u,1); v=step(v,0)+u; r[n]=F(v)); r}
    T(n,k)={if(n==0||k==0, 1, R(k,n)[1+k])} \\ Andrew Howroyd, Feb 22 2022

A177282 Number of permutations of 2 copies of 1..n with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 1, 6, 12, 26, 48, 86, 148, 250, 416, 686, 1124, 1834, 2984, 4846, 7860, 12738, 20632, 33406, 54076, 87522, 141640, 229206, 370892, 600146, 971088, 1571286, 2542428, 4113770, 6656256, 10770086, 17426404, 28196554, 45623024, 73819646, 119442740, 193262458
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Crossrefs

Column k=2 of A331562.
Cf. A000680.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$2, 6, 12][n+1],
         ((8*n-31)*a(n-1) -(4*n-19)*a(n-2) -(3*n-10)*a(n-3)
          +(2*n-10)*a(n-4)) / (3*n-11))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 14 2016

Formula

a(n) = (2n)!/2^n = A000680(n) for n<=2.

A177317 Number of permutations of n copies of 1..5 with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 2, 48, 2288, 135040, 8956752, 640160976, 48203722464, 3772321496064, 304100156874800, 25098440923318048, 2111488538062121088, 180477438192133215952, 15633823902235680250592, 1369837117884520736235840, 121216041295339359662340288, 10819157637786569144853012480
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Crossrefs

Row n=5 of A331562.

Formula

From Manuel Kauers and Christoph Koutschan, Mar 01 2023: (Start)
a(n) = coefficient of x1^n*x2^n*x3^n*x4^n*t^(5*n-1) in (2*t^3*x3(x1*x2+x1*x4*x2+x4*x2+x1*x4)-t^2*x3*(x2*x1-3*x1+x2*x4+x4)-2*t*(x3*x1+x4*x1+x1+x2+x3+x2*x4)+x1+x2+x3+x4+1)/(-t^4*x3*(x1*x2+x1*x4*x2+x4*x2+x1*x4)+t^3*x3*(x2*x1-x1+x2*x4+x4)+t^2*(x3*x1+x4*x1+x1+x2+x3+x2*x4)-t*(x1+x2+x3+x4+1)+1).
3*n^3*(1 + n)*(1 + 3*n)*(2 + 3*n)*(3281160 + 13324928*n + 23607946*n^2 + 23825758*n^3 + 14975281*n^4 + 6000286*n^5 + 1496236*n^6 + 212252*n^7 + 13113*n^8)*a(n) - (1 + n)^2*(14722560 + 163505952*n + 822949992*n^2 + 2464399296*n^3 + 4847819730*n^4 + 6543447222*n^5 + 6186525969*n^6 + 4125650658*n^7 + 1929434771*n^8 + 618883678*n^9 + 129652375*n^10 + 15978026*n^11 + 878571*n^12)*a(n+1) + 2*(2 + n)^2*(20370096 + 207973548*n + 951883014*n^2 + 2588508450*n^3 + 4659341433*n^4 + 5838584798*n^5 + 5211702571*n^6 + 3333874350*n^7 + 1515722000*n^8 + 477646252*n^9 + 99089547*n^10 + 12162378*n^11 + 668763*n^12)*a(n+2) - (2 + n)^2*(3 + n)^4*(10512 + 90060*n + 332910*n^2 + 697266*n^3 + 906481*n^4 + 745834*n^5 + 377636*n^6 + 107348*n^7 + 13113*n^8)*a(n+3) = 0. (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 20 2020

A177291 Number of permutations of 3 copies of 1..n with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 1, 20, 92, 506, 2288, 10010, 41618, 168284, 664958, 2584442, 9916688, 37679618, 142079906, 532572428, 1987037318, 7386724082, 27381500624, 101272019258, 373902595130, 1378571667644, 5077289249390, 18683930010890, 68709775705328, 252549056389394, 927895845621746
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

a(n) = (3n)!/6^n = A014606(n) for n<=2.

Crossrefs

Column k=3 of A331562.
Cf. A014606.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 21 2020
a(19)-a(20) from Alois P. Heinz, Jan 22 2020
Terms a(21) and beyond from Andrew Howroyd, May 14 2020

A177298 Number of permutations of 4 copies of 1..n with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 1, 70, 780, 11482, 135040, 1543862, 16699380, 175280570, 1792874048, 17990831182, 177773616180, 1735220375914, 16769137076968, 160740670148270, 1530462874512756, 14491157235576770, 136575590461035368, 1282229192334549022, 11999276440029403356, 111987255233226452770
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

a(n) = (4n)!/24^n = A014608(n) for n<=2.

Crossrefs

Cf. A014608.
Column k=4 of A331562.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 20 2020
a(12)-a(13) from Alois P. Heinz, Jan 21 2020
Terms a(14) and beyond from Andrew Howroyd, May 15 2020

A177301 Number of permutations of 5 copies of 1..n with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 1, 252, 7002, 284002, 8956752, 276285002, 8039989002, 226901044252, 6232521421502, 167765555015002, 4441865811412752, 116042171156004002, 2998175631045512002, 76751828260736962252, 1949598912568702682502, 49197330547669842130002, 1234523426440511782592752
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

a(n) = (5n)!/120^n = A014609(n) for n<=2.

Crossrefs

Cf. A014609.
Column k=5 of A331562.

Extensions

a(10) from Alois P. Heinz, Jan 21 2020
Terms a(11) and beyond from Andrew Howroyd, May 15 2020
Showing 1-10 of 19 results. Next