A269129
Number A(n,k) of sequences with k copies each of 1,2,...,n avoiding the pattern 12...n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 5, 1, 0, 0, 1, 43, 23, 1, 0, 0, 1, 374, 1879, 119, 1, 0, 0, 1, 3199, 173891, 102011, 719, 1, 0, 0, 1, 26945, 16140983, 117392909, 7235651, 5039, 1, 0, 0, 1, 224296, 1474050783, 142951955371, 117108036719, 674641325, 40319, 1
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
1, 5, 43, 374, 3199, 26945, ...
1, 23, 1879, 173891, 16140983, 1474050783, ...
1, 119, 102011, 117392909, 142951955371, 173996758190594, ...
Columns k=0-10 give:
A057427,
A033312,
A267532,
A269113,
A269114,
A269115,
A269116,
A269117,
A269118,
A269119,
A269120.
Rows n=0-10 give:
A000004,
A000007,
A000012,
A269121,
A269122,
A269123,
A269124,
A269125,
A269126,
A269127,
A269128.
-
g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])*
binomial(n-1, l[-1]-1)+add(f(sort(subsop(j=l[j]
-1, l))), j=1..nops(l)-1))(add(i, i=l))
end:
f:= l->(n->`if`(n=0, 1, `if`(l[1]=0, 0, `if`(n=1 or l[-1]=1, 1,
`if`(n=2, binomial(l[1]+l[2], l[1])-1, g(l))))))(nops(l)):
A:= (n, k)-> (k*n)!/k!^n - f([k$n]):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
b:= proc(k, p, j, l, t) option remember;
`if`(k=0, (-1)^t/l!, `if`(p<0, 0, add(b(k-i, p-1,
j+1, l+i*j, irem(t+i*j, 2))/(i!*p!^i), i=0..k)))
end:
A:= (n, k)-> (n*k)!*(1/k!^n-b(n, k-1, 1, 0, irem(n, 2))*n!):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 03 2016
-
b[k_, p_, j_, l_, t_] := b[k, p, j, l, t] = If[k == 0, (-1)^t/l!, If[p < 0, 0, Sum[b[k-i, p-1, j+1, l + i j, Mod[t + i j, 2]]/(i! p!^i), {i, 0, k}]] ];
A[n_, k_] := (n k)! (1/k!^n - b[n, k-1, 1, 0, Mod[n, 2]] n!); Table[ Table[ A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 07 2016, after Alois P. Heinz *)
A103882
a(n) = Sum_{i=0..n} C(n+1,i)*C(n-1,i-1)*C(2n-i,n).
Original entry on oeis.org
1, 2, 12, 92, 780, 7002, 65226, 623576, 6077196, 60110030, 601585512, 6078578508, 61908797418, 634756203018, 6545498596110, 67830161708592, 705951252118284, 7375213677918294, 77310179609631564, 812839595630249540, 8569327862277434280, 90562666977432643862
Offset: 0
-
[1] cat [&+[Binomial(n+1, i)*Binomial(n-1, i-1) * Binomial(2*n-i, n): i in [0..n]]:n in [1..21]]; // Marius A. Burtea, Jan 19 2020
-
[&+[Binomial(n, k)^2*Binomial(n+k-1, k): k in [0..n]]:n in [0..21]]; // Marius A. Burtea, Jan 19 2020
-
a:= proc(n) option remember; `if`(n<2, n+1,
((n-1)*(55*n^3-143*n^2+102*n-24)*a(n-1)+
n*(5*n-3)*(n-2)^2*a(n-2))/((n-1)*(5*n-8)*n^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 29 2015
# Alternative:
a := n -> hypergeom([-n, -n, n], [1, 1], 1):
seq(simplify(a(n)), n=0..21); # Peter Luschny, Jan 19 2020
-
Drop[Table[Sum[Sum[Multinomial[r, g, n + 1 - r - g] Binomial[n - 1,n - r] Binomial[n - 1, n - g], {g, 1, n}], {r, 1, n}], {n, 0, 18}], 1] (* Geoffrey Critzer, Jun 29 2015 *)
Table[Sum[Binomial[n+1,k]Binomial[n-1,k-1]Binomial[2n-k,n],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jun 19 2021 *)
-
a(n) = polcoef(pollegendre(n, (1 + x)/(1 - x)) + O(x^(n+1)), n); \\ Michel Marcus, Dec 20 2020
-
def A103882(n):
if n == 0: return 1
m, g = 1, 0
for k in range(n+1):
g += m*n//(n+k)
m *= (n+k+1)*(n-k)**2
m //= (k+1)**3
return g # Chai Wah Wu, Oct 04 2022
-
def A103882(n): return hypergeometric([-n,-n,n], [1,1], 1).simplify()
[A103882(n) for n in range(31)] # G. C. Greubel, May 24 2023
A275784
Number A(n,k) of up-down sequences with k copies each of 1,2,...,n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 4, 5, 1, 1, 0, 1, 12, 53, 16, 1, 1, 0, 1, 36, 761, 936, 61, 1, 1, 0, 1, 120, 12661, 87336, 25325, 272, 1, 1, 0, 1, 400, 229705, 9929000, 18528505, 933980, 1385, 1, 1, 0, 1, 1400, 4410665, 1267945800, 17504311533, 6376563600, 45504649, 7936, 1
Offset: 0
A(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
A(3,2) = 4: 121323, 132312, 231213, 231312.
A(3,3) = 12: 121313232, 121323132, 121323231, 131213232, 132312132, 132323121, 231213132, 231213231, 231312132, 231323121, 232312131, 232313121.
A(2,4) = 1: 12121212.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 4, 12, 36, 120, ...
1, 5, 53, 761, 12661, 229705, ...
1, 16, 936, 87336, 9929000, 1267945800, ...
1, 61, 25325, 18528505, 17504311533, 19126165462061, ...
1, 272, 933980, 6376563600, 59163289699260, ...
-
b:= proc(n, l) option remember; `if`(l=[], 1, `if`(irem(add(i,
i=l), 2)=0, add(b(i, subsop(i=`if`(l[i]=1, [][], l[i]-1),
l)), i=n+1..nops(l)), add(b(i-`if`(l[i]=1, 1, 0), subsop(
i=`if`(l[i]=1, [][], l[i]-1), l)), i=1..n-1)))
end:
A:= (n, k)->`if`(k=0, 1, b(`if`(irem(k*n, 2)=0, 0, n+1), [k$n])):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, l_List] := b[n, l] = If[l == {}, 1, If[EvenQ[Total[l]], Sum[b[i, ReplacePart[l, i -> If[l[[i]] == 1, Nothing, l[[i]]-1]]], {i, n+1, Length[l]}], Sum[b[i - If[l[[i]] == 1, 1, 0], ReplacePart[l, i -> If[l[[i]] == 1, Nothing, l[[i]]-1]]], {i, 1, n-1}]]]; A[n_, k_] := If[k == 0, 1, b[If[EvenQ[k*n], 0, n+1], Array[k&, n]]]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 23 2017, adapted from Maple *)
A177316
Number of permutations of n copies of 1..4 with all adjacent differences <= 1 in absolute value.
Original entry on oeis.org
1, 2, 26, 506, 11482, 284002, 7426610, 201922730, 5650739930, 161686253810, 4708709084026, 139111173397066, 4159013698117618, 125595645802182818, 3825428523179727266, 117382025506323434506, 3625185567639373456090, 112597953571519245194770
Offset: 0
-
a:= proc(n) option remember; `if`(n<3, [1, 2, 26][n+1],
(3*((105*n^4-356*n^3+402*n^2-208*n+43)*a(n-1)
-(105*n^4-904*n^3+2868*n^2-3932*n+1930)*a(n-2))
+(9*n-11)*(n-3)^3*a(n-3))/((9*n-16)*n^3))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Jan 22 2020
A177316 := n -> hypergeom([-n, -n, n, n], [1, 1, 1], 1):
seq(simplify(A177316(n)), n = 0..17); # Peter Luschny, Mar 27 2023
-
a[n_] := HypergeometricPFQ[{-n, -n, n, n}, {1, 1, 1}, 1];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, May 28 2023, after Peter Luschny *)
-
def A177316(n):
if n == 0: return 1
m, g = 1, 0
for k in range(n+1):
g += m*n**2//(n+k)**2
m *= ((n+k+1)*(n-k))**2
m //= (k+1)**4
return g # Chai Wah Wu, Oct 03 2022
A208673
Number of words A(n,k), either empty or beginning with the first letter of the k-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 10, 1, 1, 1, 1, 9, 37, 35, 1, 1, 1, 1, 15, 163, 309, 126, 1, 1, 1, 1, 25, 640, 3593, 2751, 462, 1, 1, 1, 1, 41, 2503, 36095, 87501, 25493, 1716, 1, 1, 1, 1, 67, 9559, 362617, 2336376, 2266155, 242845, 6435, 1, 1
Offset: 0
A(0,0) = A(n,0) = A(0,k) = 1: the empty word.
A(2,3) = 5:
+------+ +------+ +------+ +------+ +------+
|aabbcc| |aabcbc| |aabccb| |ababcc| |abccba|
+------+ +------+ +------+ +------+ +------+
|122222| |122222| |122222| |112222| |111112|
|001222| |001122| |001112| |011222| |011122|
|000012| |000112| |000122| |000012| |001222|
+------+ +------+ +------+ +------+ +------+
|xx | |xx | |xx | |x x | |x x|
| xx | | x x | | x x| | x x | | x x |
| xx| | x x| | xx | | xx| | xx |
+------+ +------+ +------+ +------+ +------+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ..
1, 1, 1, 1, 1, 1, 1, ..
1, 1, 3, 5, 9, 15, 25, ..
1, 1, 10, 37, 163, 640, 2503, ..
1, 1, 35, 309, 3593, 36095, 362617, ..
1, 1, 126, 2751, 87501, 2336376, 62748001, ..
1, 1, 462, 25493, 2266155, 164478048, 12085125703, ..
-
b:= proc(t, l) option remember; local n; n:= nops(l);
`if`(n<2 or {0}={l[]}, 1,
`if`(l[t]>0, b(t, [seq(l[i]-`if`(i=t, 1, 0), i=1..n)]), 0)+
`if`(t0,
b(t+1, [seq(l[i]-`if`(i=t+1, 1, 0), i=1..n)]), 0)+
`if`(t>1 and l[t-1]>0,
b(t-1, [seq(l[i]-`if`(i=t-1, 1, 0), i=1..n)]), 0))
end:
A:= (n, k)-> `if`(n=0 or k=0, 1, b(1, [n-1, n$(k-1)])):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[t_, l_List] := b[t, l] = Module[{n = Length[l]}, If[n < 2 || {0} == Union[l], 1, If[l[[t]] > 0, b[t, Table[l[[i]] - If[i == t, 1, 0], {i, 1, n}]], 0] + If[t < n && l[[t + 1]] > 0, b[t + 1, Table[l[[i]] - If[i == t + 1, 1, 0], {i, 1, n}]], 0] + If[t > 1 && l[[t - 1]] > 0, b[t - 1, Table[l[[i]] - If[i == t - 1, 1, 0], {i, 1, n}]], 0]]]; A[n_, k_] := If[n == 0 || k == 0, 1, b[1, Join[{n - 1}, Array[n&, k - 1]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
-
F(u)={my(n=#u); sum(k=1, n,u[k]*binomial(n-1,k-1))}
step(u, c)={my(n=#u); vector(n, k, sum(i=max(0, 2*k-c-n), k-1, sum(j=0, n-2*k+i+c, u[k-i+j]*binomial(n-1, 2*k-1-c-i+j)*binomial(k-1, k-i-1)*binomial(k-i+j-c, j) ))) }
R(n,k)={my(r=vector(n+1), u=vector(k), v=vector(k)); u[1]=v[1]=r[1]=r[2]=1; for(n=3, #r, u=step(u,1); v=step(v,0)+u; r[n]=F(v)); r}
T(n,k)={if(n==0||k==0, 1, R(k,n)[1+k])} \\ Andrew Howroyd, Feb 22 2022
A177282
Number of permutations of 2 copies of 1..n with all adjacent differences <= 1 in absolute value.
Original entry on oeis.org
1, 1, 6, 12, 26, 48, 86, 148, 250, 416, 686, 1124, 1834, 2984, 4846, 7860, 12738, 20632, 33406, 54076, 87522, 141640, 229206, 370892, 600146, 971088, 1571286, 2542428, 4113770, 6656256, 10770086, 17426404, 28196554, 45623024, 73819646, 119442740, 193262458
Offset: 0
-
a:= proc(n) option remember; `if`(n<4, [1$2, 6, 12][n+1],
((8*n-31)*a(n-1) -(4*n-19)*a(n-2) -(3*n-10)*a(n-3)
+(2*n-10)*a(n-4)) / (3*n-11))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jan 14 2016
A177317
Number of permutations of n copies of 1..5 with all adjacent differences <= 1 in absolute value.
Original entry on oeis.org
1, 2, 48, 2288, 135040, 8956752, 640160976, 48203722464, 3772321496064, 304100156874800, 25098440923318048, 2111488538062121088, 180477438192133215952, 15633823902235680250592, 1369837117884520736235840, 121216041295339359662340288, 10819157637786569144853012480
Offset: 0
A177291
Number of permutations of 3 copies of 1..n with all adjacent differences <= 1 in absolute value.
Original entry on oeis.org
1, 1, 20, 92, 506, 2288, 10010, 41618, 168284, 664958, 2584442, 9916688, 37679618, 142079906, 532572428, 1987037318, 7386724082, 27381500624, 101272019258, 373902595130, 1378571667644, 5077289249390, 18683930010890, 68709775705328, 252549056389394, 927895845621746
Offset: 0
A177298
Number of permutations of 4 copies of 1..n with all adjacent differences <= 1 in absolute value.
Original entry on oeis.org
1, 1, 70, 780, 11482, 135040, 1543862, 16699380, 175280570, 1792874048, 17990831182, 177773616180, 1735220375914, 16769137076968, 160740670148270, 1530462874512756, 14491157235576770, 136575590461035368, 1282229192334549022, 11999276440029403356, 111987255233226452770
Offset: 0
A177301
Number of permutations of 5 copies of 1..n with all adjacent differences <= 1 in absolute value.
Original entry on oeis.org
1, 1, 252, 7002, 284002, 8956752, 276285002, 8039989002, 226901044252, 6232521421502, 167765555015002, 4441865811412752, 116042171156004002, 2998175631045512002, 76751828260736962252, 1949598912568702682502, 49197330547669842130002, 1234523426440511782592752
Offset: 0
Showing 1-10 of 19 results.
Comments