cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A130130 a(0)=0, a(1)=1, a(n)=2 for n >= 2.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Paul Curtz, Aug 01 2007

Keywords

Comments

a(n) is also total number of positive integers below 10^(n+1) requiring 9 positive cubes in their representation as sum of cubes (cf. Dickson, 1939).
A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + a(n) = A002283(n).
a(n) = number of obvious divisors of n. The obvious divisors of n are the numbers 1 and n. - Jaroslav Krizek, Mar 02 2009
Number of colors needed to paint n adjacent segments on a line. - Jaume Oliver Lafont, Mar 20 2009
a(n) = ceiling(n-th nonprimes/n) = ceiling(A018252(n)/A000027(n)) for n >= 1. Numerators of (A018252(n)/A000027(n)) in A171529(n), denominators of (A018252(n)/A000027(n)) in A171530(n). a(n) = A171624(n) + 1 for n >= 5. - Jaroslav Krizek, Dec 13 2009
a(n) is also the continued fraction for sqrt(1/2). - Enrique Pérez Herrero, Jul 12 2010
For n >= 1, a(n) = minimal number of divisors of any n-digit number. See A066150 for maximal number of divisors of any n-digit number. - Jaroslav Krizek, Jul 18 2010
Central terms in the triangle A051010. - Reinhard Zumkeller, Jun 27 2013
Decimal expansion of 11/900. - Elmo R. Oliveira, May 05 2024

Crossrefs

Programs

Formula

G.f.: x*(1+x)/(1-x) = x*(1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 20 2009
a(n) = A000005(n) - A070824(n) for n >= 1.
E.g.f.: 2*exp(x) - x - 2. - Stefano Spezia, May 19 2024

A158799 a(0)=1, a(1)=2, a(n)=3 for n >= 2.

Original entry on oeis.org

1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Jaume Oliver Lafont, Mar 27 2009

Keywords

Comments

a(n) = number of neighboring natural numbers of n (i.e., n, n - 1, n + 1). a(n) = number of natural numbers m such that n - 1 <= m <= n + 1. Generalization: If a(n,k) = number of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = a(n-1,k) + 1 = n + k for 0 <= n <= k, a(n,k) = a(n-1,k) = 2*k + 1 for n >= k + 1. - Jaroslav Krizek, Nov 18 2009
Partial sums of A130716; partial sums give A008486. - Jaroslav Krizek, Dec 06 2009
In atomic spectroscopy, a(n) is the number of P term symbols with spin multiplicity equal to n+1, i.e., there is one singlet-P term (n=0), there are two doublet-P terms (n=1), and there are three P terms for triple multiplicity (n=2) and higher (n>2). - A. Timothy Royappa, Mar 16 2012
a(n+1) is also the domination number of the n-Andrásfai graph. - Eric W. Weisstein, Apr 09 2016
Decimal expansion of 37/300. - Elmo R. Oliveira, May 11 2024
a(n+1) is also the domination number of the n X n rook complement graph. - Eric W. Weisstein, Mar 10 2025

Crossrefs

Programs

  • Mathematica
    PadRight[{1,2},120,{3}] (* or *) Min[#,3]&/@Range[120] (* Harvey P. Dale, Apr 08 2018 *)
  • PARI
    a(n)=if(n>1,3,if(n<0,0,n++))

Formula

G.f.: (1+x+x^2)/(1-x) = (1-x^3)/(1-x)^2.
a(n) = (n>=0)+(n>=1)+(n>=2).
a(n) = 1 + n for 0 <= n <= 1, a(n) = 3 for n >= 2. a(n) = A157532(n) for n >= 1. - Jaroslav Krizek, Nov 18 2009
E.g.f.: 3*exp(x) - x - 2 = x^2/(2*G(0)) where G(k) = 1 + (k+2)/(x - x*(k+1)/(x + k + 1 - x^4/(x^3 + (k+1)*(k+2)*(k+3)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2012
a(n) = min(n+1,3). - Wesley Ivan Hurt, Apr 16 2014
a(n) = 1 + A130130(n). - Elmo R. Oliveira, May 11 2024

Extensions

Corrected by Jaroslav Krizek, Dec 17 2009

A158478 Number of colors needed to paint n sectors of a circle.

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2
Offset: 0

Views

Author

Jaume Oliver Lafont, Mar 20 2009

Keywords

Comments

No pair of adjacent sectors can have the same color.
For n > 0: smallest prime factor of A098548(n).
Decimal expansion of 61/4950. - Elmo R. Oliveira, May 05 2024

Crossrefs

Programs

  • Haskell
    a158478 n = if n < 4 then n else 2 + mod n 2
    a158478_list = [0..3] ++ cycle [2,3]
    -- Reinhard Zumkeller, Nov 30 2014
  • Mathematica
    Join[Range[0, 1], ConstantArray[{2, 3}, 20]] // Flatten (* Robert Price, Jun 15 2020 *)
  • PARI
    a(n)=if(n<4,n,2+n%2)
    

Formula

G.f.: x*(1+2*x+2*x^2)/(1-x^2).
E.g.f.: 2*cosh(x) + 3*sinh(x) - 2*(1 + x). - Stefano Spezia, Mar 24 2020
a(n) = a(n-2) for n > 3. - Elmo R. Oliveira, May 05 2024
a(n) = (n mod 2) + (2 mod (n+1)). - Aaron J Grech, Sep 02 2024

A113127 Expansion of (1 + x + x^2 + x^3)/(1-x)^2.

Original entry on oeis.org

1, 3, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230
Offset: 0

Views

Author

Paul Barry, Oct 14 2005

Keywords

Comments

Row sums of number triangle A113126.
Equals binomial transform of [1, 2, 1, 0, -1, 2, -3, 4, -5, ...]. - Gary W. Adamson, Feb 14 2009
From 6 on the same as A016825. - R. J. Mathar, Jul 21 2013
The size of a maximal 4-degenerate graph of order n-2 (this class includes 4-trees). - Allan Bickle, Nov 14 2021
Maximum size of an apex graph of order n-2 (an apex graph can be made planar by deleting a single vertex). - Allan Bickle, Nov 14 2021

Crossrefs

a(n) - a(n-1) = A158411(n+1). - Jaume Oliver Lafont, Mar 27 2009

Programs

  • Magma
    [4*n-2+2*Binomial(0, n)+Binomial(1, n): n in [0..80]]; // Vincenzo Librandi, Nov 03 2018
  • Mathematica
    CoefficientList[Series[(1 + x + x^2 + x^3) / (1 - x)^2, {x, 0, 100}], x] (* Vincenzo Librandi, Nov 03 2018 *)
    LinearRecurrence[{2,-1},{1,3,6,10},60] (* Harvey P. Dale, Jul 08 2019 *)
  • PARI
    x='x+O('x^66); Vec((1+x+x^2+x^3)/(1-x)^2) \\ Joerg Arndt, May 06 2013
    

Formula

a(n) = 4*n - 2 + 2*binomial(0, n) + binomial(1, n);
a(n) = binomial(n+1, n) + binomial(n, n-1) + binomial(n-1, n-2) + binomial(n-2, n-3).
Row sums of triangle A131034. - Gary W. Adamson, Jun 10 2007
G.f.: (x^2-1)/Q(0), where Q(k)= 4*x - 1 + x*k - x*(x-1)*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 05 2013
a(n) = A111284(n+1) for n >= 2. - Georg Fischer, Nov 02 2018
a(n) = 4*(n+2) - 10 for n >= 2. - Allan Bickle, Nov 14 2021

A278317 Number of neighbors of each new term in a right triangle read by rows.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 2, 4, 3, 2, 2, 4, 4, 3, 2, 2, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 18 2016

Keywords

Comments

To evaluate T(n,k) consider only the neighbors of T(n,k) that are present in the triangle when T(n,k) should be a new term in the triangle.
Apart from the first column and the first two diagonals the rest of the elements are 4's.
For the same idea but for an isosceles triangle see A275015; for a square array see A278290, for a square spiral see A278354; and for a hexagonal spiral see A047931.

Examples

			Triangle begins:
0;
1, 2;
2, 3, 2;
2, 4, 3, 2;
2, 4, 4, 3, 2;
2, 4, 4, 4, 3, 2;
2, 4, 4, 4, 4, 3, 2;
2, 4, 4, 4, 4, 4, 3, 2;
2, 4, 4, 4, 4, 4, 4, 3, 2;
2, 4, 4, 4, 4, 4, 4, 4, 3, 2;
...
		

Crossrefs

Apart from the initial zero, row sums give A004767.
Column 1 is A130130.
Columns > 1 give the terms greater than 1 of A158411.
Right border gives 0 together with A007395, also twice A057427.
Second right border gives A122553.

A158515 Number of colors needed to paint a wheel graph on n nodes.

Original entry on oeis.org

0, 1, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4
Offset: 0

Views

Author

Jaume Oliver Lafont, Mar 20 2009

Keywords

Comments

Adjacent nodes are not allowed to have the same color.

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 1, 2}, 100, {4, 3}] (* Paolo Xausa, Apr 22 2024 *)
  • PARI
    a(n)=if(n<4,n,4-n%2)
    
  • Scheme
    (define (A158515 n) (if (< n 4) n (- 4 (modulo n 2)))) ;; Antti Karttunen, Sep 14 2017

Formula

G.f.: x*(1+2*x+2*x^2+2*x^3)/(1-x^2)

A294619 a(0) = 0, a(1) = 1, a(2) = 2 and a(n) = 1 for n > 2.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of (sqrt(5) + 1)/(2*sqrt(5)).
Inverse binomial transform is {0, 1, 4, 10, 21, 41, 78, 148, ...}, A132925 with one leading zero.
Also the main diagonal in the expansion of (1 + x)^n - 1 + x^2 (A300453).
The partial sum of this sequence is A184985.
a(n) is the number of state diagrams having n components that are obtained from an n-foil [(2,n)-torus knot] shadow. Let a shadow diagram be the regular projection of a mathematical knot into the plane, where the under/over information at every crossing is omitted. A state for the shadow diagram is a diagram obtained by merging either of the opposite areas surrounding each crossing.
a(n) satisfies the identities a(n)^a(n+k) = a(n), 2^a(k) = 2*a(k) and a(k)! = a(k), k > 0.
Also the number of non-isomorphic simple connected undirected graphs with n+1 edges and a longest path of length 2. - Nathaniel Gregg, Nov 02 2021

Examples

			For n = 2, the shadow of the Hopf link yields 2 two-component state diagrams (see example in A300453). Thus a(2) = 2.
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
  • L. H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.
  • V. Manturov, Knot Theory, CRC Press, 2004.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x + x^2 - x^3)/(1 - x), {x, 0, 100}], x] (* Wesley Ivan Hurt, Nov 05 2017 *)
    f[n_] := If[n > 2, 1, n]; Array[f, 105, 0] (* Robert G. Wilson v, Dec 27 2017 *)
    PadRight[{0,1,2},120,{1}] (* Harvey P. Dale, Feb 20 2023 *)
  • Maxima
    makelist((1 + (-1)^((n + 1)!))/2 + kron_delta(n, 2), n, 0, 100);
  • PARI
    a(n) = if(n>2, 1, n);
    

Formula

a(n) = ((-1)^2^(n^2 + 3*n + 2) + (-1)^2^(n^2 - n) - (-1)^2^(n^2 - 3*n + 2) + 1)/2.
a(n) = (1 + (-1)^((n + 1)!))/2 + Kronecker(n, 2).
a(n) = min(n, 3) - 2*(max(n - 2, 0) - max(n - 3, 0)).
a(n) = floor(F(n+1)/F(n)) for n > 0, with a(0) = 0, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = a(n-1) for n > 3, with a(0) = 0, a(1) = 1, a(2) = 2 and a(3) = 1.
A005803(a(n)) = A005096(a(n)) = A000007(n).
A107583(a(n)) = A103775(n+5).
a(n+1) = 2^A185012(n+1), with a(0) = 0.
a(n) = A163985(n) mod A004278(n+1).
a(n) = A157928(n) + A171386(n+1).
a(n) = A063524(n) + A157928(n) + A185012(n).
a(n) = A010701(n) - A141044(n) - A179184(n).
G.f.: (x + x^2 - x^3)/(1 - x).
E.g.f.: (2*exp(x) - 2 + x^2)/2.

A168092 a(n) = number of natural numbers m such that n - 2 <= m <= n + 2.

Original entry on oeis.org

2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Jaroslav Krizek, Nov 18 2009

Keywords

Comments

Generalization: If a(n,k) = number of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = a(n-1,k) + 1 = n + k for 0 <= n <= k, a(n,k) = a(n-1,k) = 2k + 1 for n >= k + 1 (see, e.g., A158799). a(n) = (2 + n) for 0 <= n <= 2, a(n) = 5 for n >= 3.

Crossrefs

Cf. A158411. - Jaume Oliver Lafont, Nov 29 2009

Formula

G.f.: (2+x+x^2+x^3)/(1-x) = 1/(1-x)+(1-x^4)/(1-x)^2. - Jaume Oliver Lafont, Nov 29 2009

A373005 Array read by ascending antidiagonals: A(n,k) is the maximum possible cardinality of a set of points of diameter at most k-1 in {0,1}^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 2, 0, 0, 1, 2, 3, 2, 1, 0, 1, 2, 4, 4, 2, 2, 0, 1, 2, 5, 6, 4, 2, 1, 0, 1, 2, 6, 8, 7, 4, 2, 0, 0, 1, 2, 7, 10, 11, 8, 4, 2, 1, 0, 1, 2, 8, 12, 16, 14, 8, 4, 2, 2, 0, 1, 2, 9, 14, 22, 22, 15, 8, 4, 2, 1, 0, 1, 2, 10, 16, 29, 32, 26, 16, 8, 4, 2, 0
Offset: 0

Views

Author

Stefano Spezia, May 19 2024

Keywords

Comments

A(n,k) is also the size of the Hamming ball in {0,1}^n of radius (k-1)/2 if k is odd and of the union of two Hamming balls in {0,1}^n of radius k/2-1 whose centers are of Hamming distance 1 if k is even.

Examples

			The array begins:
  1, 1, 2, 1,  0,  1,  2,  1, ...
  0, 1, 2, 2,  2,  2,  2,  2, ...
  0, 1, 2, 3,  4,  4,  4,  4, ...
  0, 1, 2, 4,  6,  7,  8,  8, ...
  0, 1, 2, 5,  8, 11, 14, 15, ...
  0, 1, 2, 6, 10, 16, 22, 26, ...
  0, 1, 2, 7, 12, 22, 32, 42, ...
  0, 1, 2, 8, 14, 29, 44, 64, ...
  ...
		

Crossrefs

Cf. A000007 (k=0), A000012 (k=1), A000124 (k=5), A000125 (k=7), A005843 (k=4), A006261 (k=11), A007395 (k=2), A008859 (k=13), A011782 (main diagonal), A014206, A046127 (k=8), A059173, A059174, A130130 (n=1), A158411 (n=2), A373006 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=If[OddQ[k],Sum[Binomial[n,i],{i,0,(k-1)/2}], Binomial[n-1,k/2-1]+Sum[Binomial[n,i],{i,0,k/2-1}]]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten

Formula

A(n,k) = Sum_{i=0..(k-1)/2} binomial(n,i) if k is odd;
A(n,k) = binomial(n-1,k/2-1) + Sum_{i=0..k/2-1} binomial(n,i) if k is even.
A(n,3) = n+1.
A(n,6) = A014206(n-1).
A(n,9) = A000127(n+1).
A(n,10) = A059173(n) for n > 0.
A(n,12) = A059174(n) for n > 0.
A(0,k) = A007877(k) for k > 0.

A210032 a(n)=n for n=1,2,3 and 4; a(n)=5 for n >= 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

A. Timothy Royappa, Mar 16 2012

Keywords

Comments

In atomic spectroscopy, a(n) is the number of D term symbols with spin multiplicity equal to n, i.e., there is one singlet-D term (n=1), and there are two doublet-D terms (n=2), three triple-D terms (n=3), four quartet-D terms (n=4) and five terms for every other D term of multiplicity 5 or higher (n >= 5).
Decimal expansion of 11111/9000. - Arkadiusz Wesolowski, Mar 29 2012

Crossrefs

Programs

Formula

a(n) = min(n,5). - Wesley Ivan Hurt, Apr 16 2014
From Elmo R. Oliveira, Jun 26 2024: (Start)
G.f.: x*(1+x+x^2+x^3+x^4)/(1-x) = x*(1-x^5)/(1-x)^2.
a(n) = 1 + A158411(n-1) = A101272(n+1) - 1 = A168093(n-1) - 2. (End)
Showing 1-10 of 10 results.