cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A130130 a(0)=0, a(1)=1, a(n)=2 for n >= 2.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Paul Curtz, Aug 01 2007

Keywords

Comments

a(n) is also total number of positive integers below 10^(n+1) requiring 9 positive cubes in their representation as sum of cubes (cf. Dickson, 1939).
A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + a(n) = A002283(n).
a(n) = number of obvious divisors of n. The obvious divisors of n are the numbers 1 and n. - Jaroslav Krizek, Mar 02 2009
Number of colors needed to paint n adjacent segments on a line. - Jaume Oliver Lafont, Mar 20 2009
a(n) = ceiling(n-th nonprimes/n) = ceiling(A018252(n)/A000027(n)) for n >= 1. Numerators of (A018252(n)/A000027(n)) in A171529(n), denominators of (A018252(n)/A000027(n)) in A171530(n). a(n) = A171624(n) + 1 for n >= 5. - Jaroslav Krizek, Dec 13 2009
a(n) is also the continued fraction for sqrt(1/2). - Enrique Pérez Herrero, Jul 12 2010
For n >= 1, a(n) = minimal number of divisors of any n-digit number. See A066150 for maximal number of divisors of any n-digit number. - Jaroslav Krizek, Jul 18 2010
Central terms in the triangle A051010. - Reinhard Zumkeller, Jun 27 2013
Decimal expansion of 11/900. - Elmo R. Oliveira, May 05 2024

Crossrefs

Programs

Formula

G.f.: x*(1+x)/(1-x) = x*(1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 20 2009
a(n) = A000005(n) - A070824(n) for n >= 1.
E.g.f.: 2*exp(x) - x - 2. - Stefano Spezia, May 19 2024

A061439 Largest number whose cube has n digits.

Original entry on oeis.org

2, 4, 9, 21, 46, 99, 215, 464, 999, 2154, 4641, 9999, 21544, 46415, 99999, 215443, 464158, 999999, 2154434, 4641588, 9999999, 21544346, 46415888, 99999999, 215443469, 464158883, 999999999, 2154434690, 4641588833, 9999999999
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Comments

a(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Examples

			a(5) = 46 because 46^3 = 97336 has 5 digits, while 47^3 = 103823 has 6 digits.
		

Crossrefs

a(n) is one more than the corresponding term of A018005. Cf. A061435.

Programs

  • Maple
    Digits := 100:
    A061439 := n->ceil(10^(n/3))-1:
    seq (A061439(n), n=1..40);
  • Mathematica
    t={}; i=0; Do[i=i+1; While[IntegerLength[i^3]<=n,i++]; AppendTo[t,i-1],{n,20}]; t (* Jayanta Basu, May 19 2013 *)

Formula

a(n) = ceiling(10^(n/3)) - 1. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001
Typo in Maple program fixed by Martin Renner, Jan 31 2011

A181404 Total number of positive integers below 10^n requiring 8 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

Also continued fraction expansion of (9+sqrt(229))/74. - Bruno Berselli, Sep 09 2011

Crossrefs

Programs

Formula

A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + a(n) + A130130(n) = A002283(n).
a(n) = 15 for n > 2. - Charles R Greathouse IV, Sep 09 2011
G.f.: 3*x^2*(1+4*x)/(1-x). - Bruno Berselli, Sep 09 2011
E.g.f.: 3*(5*(exp(x) - 1 - x) - 2*x^2). - Stefano Spezia, May 21 2024

Extensions

a(5)-a(7) from Lars Blomberg, May 04 2011

A181375 Total number of positive integers below 10^n requiring 2 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

2, 9, 41, 202, 938, 4354, 20330, 94625, 439959, 2045048, 9500746, 44124084, 204883131, 951202028, 4415710979, 20497646229, 95146359635
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A061439(n) + a(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Crossrefs

Cf. A003325.

Programs

  • Maple
    iscube:=proc(n) if root(n,3)=trunc(root(n,3)) then true; else false; fi; end:
    isA003325:=proc(n) local x,y3; if iscube(n) then false; else for x from 1 do y3:=n-x^3; if y3A003325(k) then i:=i+1; fi; od: return(i); end:
    for n from 1 do print(a(n)); od;
  • PARI
    a(n)=my(N=10^n,v=List(),x3);sum(x=1,sqrtnint(N-1,3),x3=x^3;sum(y=1, min(sqrtnint(N-x3,3),x), !ispower(x3+y^3,3) && listput(v,x3+y^3))); #vecsort(v,,8) \\ Charles R Greathouse IV, Oct 16 2013

Extensions

a(6)-a(12) from Lars Blomberg, May 04 2011
a(13)-a(17) from Hiroaki Yamanouchi, Jul 12 2014

A181377 Total number of positive integers below 10^n requiring 3 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 15, 122, 1128, 10678, 103421, 1017326, 10077684, 100294216
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A061439(n) + A181375(n) + a(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Crossrefs

Cf. A047702.

Extensions

a(5)-a(9) from Lars Blomberg, May 04 2011

A181379 Total number of positive integers below 10^n requiring 4 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 18, 242, 3343, 46683, 605489, 7221246, 80884939, 865304098
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A061439(n) + A181375(n) + A181377(n) + a(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Crossrefs

Cf. A047703.

Extensions

a(5)-a(9) from Lars Blomberg, May 04 2011

A181400 Total number of positive integers below 10^n requiring 6 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 18, 202, 1325, 3440, 3919, 3922, 3922, 3922
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + a(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n)

Crossrefs

Cf. A046040.

Extensions

a(5)-a(7) from Lars Blomberg, May 04 2011
a(8)-a(9) from Hiroaki Yamanouchi, Sep 23 2014

A181402 Total number of positive integers below 10^n requiring 7 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 10, 73, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

An unpublished result of Deshouillers-Hennecart-Landreau, combined with Lemma 3 from Bertault, Ramaré, & Zimmermann implies that a(4)-a(34) are all 121. Probably a(n) = 121 for all n > 3. - Charles R Greathouse IV, Jan 23 2014

Crossrefs

Formula

A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + a(n) + A181404(n) + A130130(n) = A002283(n).
Conjectured g.f.: x*(1+9*x+63*x^2+48*x^3)/(1-x). - Colin Barker, May 04 2012
Conjectured e.g.f.: 121*(exp(x) - 1) - 120*x - 111*x^2/2 - 8*x^3. - Stefano Spezia, May 21 2024

Extensions

a(5)-a(7) from Lars Blomberg, May 04 2011
a(8)-a(34) from Charles R Greathouse IV, Jan 23 2014

A181384 Total number of n-digit numbers requiring 5 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 20, 272, 3549, 34234, 244503, 1454243, 7201405, 25018440
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + a(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181381(n)-A181381(n-1)

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014
Showing 1-9 of 9 results.