A215692 Smallest prime whose decimal expansion consists of the concatenation of a 1-digit cube, a 2-digit cube, a 3-digit cube, ..., and an n-digit cube, or 0 if there is no such prime.
0, 127, 127343, 1275122197, 127125100019683, 127125100012167148877, 1271251000106481038233442951, 127125100010648103823100000014348907, 127125100010648103823100000010077696108531333, 1271251000106481038231000000100776961005446251939096223
Offset: 1
Examples
a(1) = 0 because no 1-digit cube {0,1,8} is prime. a(2) = 127 because 127 is prime and is the concatenation of 1=1^3 and 27 = 3^3.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..44 (all terms < 10^1000), Dec 31 2020.
Crossrefs
Programs
-
PARI
apply( {A215692(n)=forvec(v=vector(n,k,[ceil(10^((k-1)/3)),sqrtnint(10^k-1,3)]),ispseudoprime(n=eval(concat([Str(k^3)|k<-v])))&&return(n))}, [1..12]) \\ M. F. Hasler, Dec 31 2020
Formula
a(n) ~ 10^(n(n+1)/2)*0.1271251000106481038231000000100776961... (conjectured) - M. F. Hasler, Dec 31 2020
Extensions
More terms (up to a(10)) from Alois P. Heinz, Aug 21 2012
Comments