cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061503 a(n) = Sum_{k=1..n} tau(k^2), where tau is the number of divisors function A000005.

Original entry on oeis.org

1, 4, 7, 12, 15, 24, 27, 34, 39, 48, 51, 66, 69, 78, 87, 96, 99, 114, 117, 132, 141, 150, 153, 174, 179, 188, 195, 210, 213, 240, 243, 254, 263, 272, 281, 306, 309, 318, 327, 348, 351, 378, 381, 396, 411, 420, 423, 450, 455, 470, 479, 494, 497
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2001

Keywords

Comments

a(n) is the number of pairs of positive integers <= n with their LCM <= n. - Andrew Howroyd, Sep 01 2019

References

  • Mentioned by Steven Finch in a posting to the Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU), Jun 13 2001.

Crossrefs

Cf. A000005, A061502. Partial sums of A048691.

Programs

  • GAP
    List([1..60],n->Sum([1..n],k->Tau(k^2))); # Muniru A Asiru, Mar 09 2019
    
  • Maple
    with(numtheory): a:=n->add(tau(k^2),k=1..n): seq(a(n),n=1..60); # Muniru A Asiru, Mar 09 2019
  • Mathematica
    DivisorSigma[0, Range[60]^2] // Accumulate (* Jean-François Alcover, Nov 25 2013 *)
  • PARI
    for (n=1, 1024, write("b061503.txt", n, " ", sum(k=1, n, numdiv(k^2)))) \\ Harry J. Smith, Jul 23 2009
    
  • PARI
    t=0;v=vector(60,n,t+=numdiv(n^2)) \\ Charles R Greathouse IV, Nov 08 2012
    
  • Python
    from math import prod
    from sympy import factorint
    def A061503(n): return sum(prod(2*e+1 for e in factorint(k).values()) for k in range(1,n+1)) # Chai Wah Wu, May 10 2022
  • Sage
    def A061503(n) :
        tau = sloane.A000005
        return add(tau(k^2) for k in (1..n))
    [ A061503(i) for i in (1..19)] # Peter Luschny, Sep 15 2012
    

Formula

a(n) = Sum_{j=1..n^2} floor(n/A019554(j)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002
a(n) = Sum_{i=1..n} 2^omega(i) * floor(n/i). - Enrique Pérez Herrero, Sep 15 2012
a(n) ~ 3/Pi^2 * n log^2 n. - Charles R Greathouse IV, Nov 08 2012
a(n) ~ 3*n/Pi^2 * (log(n)^2 + log(n)*(-2 + 6*g - 24*z/Pi^2) + 2 - 6*g + 6*g^2 - 6*sg1 + 288*z^2/Pi^4 - 24*(-z + 3*g*z + z2)/ Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant (see A082633), z = Zeta'(2) (see A073002), z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{k=1..n} A064608(floor(n/k)). - Daniel Suteu, Mar 09 2019

Extensions

Name corrected by Peter Luschny, Sep 15 2012