A061503 a(n) = Sum_{k=1..n} tau(k^2), where tau is the number of divisors function A000005.
1, 4, 7, 12, 15, 24, 27, 34, 39, 48, 51, 66, 69, 78, 87, 96, 99, 114, 117, 132, 141, 150, 153, 174, 179, 188, 195, 210, 213, 240, 243, 254, 263, 272, 281, 306, 309, 318, 327, 348, 351, 378, 381, 396, 411, 420, 423, 450, 455, 470, 479, 494, 497
Offset: 1
Keywords
References
- Mentioned by Steven Finch in a posting to the Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU), Jun 13 2001.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1024
- Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, vol. 101, (2002), pp. 105-114.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 19.
- Vaclav Kotesovec, Graph - the asymptotic ratio
- Eric Weisstein's World of Mathematics, Stieltjes Constants
Programs
-
GAP
List([1..60],n->Sum([1..n],k->Tau(k^2))); # Muniru A Asiru, Mar 09 2019
-
Maple
with(numtheory): a:=n->add(tau(k^2),k=1..n): seq(a(n),n=1..60); # Muniru A Asiru, Mar 09 2019
-
Mathematica
DivisorSigma[0, Range[60]^2] // Accumulate (* Jean-François Alcover, Nov 25 2013 *)
-
PARI
for (n=1, 1024, write("b061503.txt", n, " ", sum(k=1, n, numdiv(k^2)))) \\ Harry J. Smith, Jul 23 2009
-
PARI
t=0;v=vector(60,n,t+=numdiv(n^2)) \\ Charles R Greathouse IV, Nov 08 2012
-
Python
from math import prod from sympy import factorint def A061503(n): return sum(prod(2*e+1 for e in factorint(k).values()) for k in range(1,n+1)) # Chai Wah Wu, May 10 2022
-
Sage
def A061503(n) : tau = sloane.A000005 return add(tau(k^2) for k in (1..n)) [ A061503(i) for i in (1..19)] # Peter Luschny, Sep 15 2012
Formula
a(n) = Sum_{j=1..n^2} floor(n/A019554(j)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002
a(n) = Sum_{i=1..n} 2^omega(i) * floor(n/i). - Enrique Pérez Herrero, Sep 15 2012
a(n) ~ 3/Pi^2 * n log^2 n. - Charles R Greathouse IV, Nov 08 2012
a(n) ~ 3*n/Pi^2 * (log(n)^2 + log(n)*(-2 + 6*g - 24*z/Pi^2) + 2 - 6*g + 6*g^2 - 6*sg1 + 288*z^2/Pi^4 - 24*(-z + 3*g*z + z2)/ Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant (see A082633), z = Zeta'(2) (see A073002), z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{k=1..n} A064608(floor(n/k)). - Daniel Suteu, Mar 09 2019
Extensions
Name corrected by Peter Luschny, Sep 15 2012
Comments