cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061537 Product of unitary divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 36, 7, 8, 9, 100, 11, 144, 13, 196, 225, 16, 17, 324, 19, 400, 441, 484, 23, 576, 25, 676, 27, 784, 29, 810000, 31, 32, 1089, 1156, 1225, 1296, 37, 1444, 1521, 1600, 41, 3111696, 43, 1936, 2025, 2116, 47, 2304, 49, 2500, 2601, 2704, 53, 2916
Offset: 1

Views

Author

Labos Elemer, May 15 2001

Keywords

Comments

Also appears to be smallest number m such that A066296(m) = n.

Examples

			For n = 288, unitary divisors = {1, 9, 32, 288}, a(288) = 1 * 9 * 32 * 288 = 82944.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(`if`(igcd(d, n/d)=1, d, 1), d=numtheory[divisors](n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 01 2017
  • Mathematica
    Table[Times@@ Select[Divisors[n], GCD[#, n/#]==1 &], {n, 1, 100}] (* Indranil Ghosh, Aug 04 2017 *)
    a[n_] := n^(2^(PrimeNu[n]-1)); Array[a, 60] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    { for (n=1, 1000, s=divisors(n); a=1; for (i=2, length(s), d=s[i]; if (gcd(d, n/d)==1, a*=d)); write("b061537.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 24 2009
    
  • PARI
    a(n) = n^(2^(omega(n)-1)); \\ Amiram Eldar, Jul 22 2024
    
  • Python
    from sympy import divisors, gcd, prod
    def a(n): return prod(d for d in divisors(n) if gcd(d, n//d)==1)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 04 2017

Formula

a(n) = n^(A034444(n)/2) = n^(2^(A001221(n)-1)).

Extensions

Corrected and edited by Jaroslav Krizek, Mar 05 2009