cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A062509 a(n) = n^omega(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 36, 7, 8, 9, 100, 11, 144, 13, 196, 225, 16, 17, 324, 19, 400, 441, 484, 23, 576, 25, 676, 27, 784, 29, 27000, 31, 32, 1089, 1156, 1225, 1296, 37, 1444, 1521, 1600, 41, 74088, 43, 1936, 2025, 2116, 47, 2304, 49, 2500, 2601, 2704, 53, 2916
Offset: 1

Views

Author

Labos Elemer, Jul 13 2001

Keywords

Comments

Not always equal to product of unitary divisors of n [compare with A061537]. This deviates from A061537 at 30, 42, 60, 66, etc.

Examples

			n=30: a(30) = 30^3 = 27000;
n=72: a(72) = 72^2 = 5184.
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} tau(d^n)*mu(n/d). - Ridouane Oudra, Sep 17 2022

A157488 a(1) = 1; for n > 1, a(n) = product of exponential divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 16, 27, 10, 11, 72, 13, 14, 15, 128, 17, 108, 19, 200, 21, 22, 23, 144, 125, 26, 81, 392, 29, 30, 31, 64, 33, 34, 35, 46656, 37, 38, 39, 400, 41, 42, 43, 968, 675, 46, 47, 3456, 343, 500, 51, 1352, 53, 324, 55, 784, 57, 58, 59, 1800, 61, 62, 1323, 4096
Offset: 1

Views

Author

Jaroslav Krizek, Mar 01 2009

Keywords

Comments

The exponential divisors of a number n = Product p(i)^e(i) are all numbers of the form Product p(i)^s(i) where s(i) divides e(i) for all i.
Not multiplicative: a(3)=3 (e-divisor 3^1), a(4)=8 (e-divisors 2^1 and 2^2), but a(12)=72 (e-divisors 3*2 and 3*2^2) <> a(3)*a(4). - R. J. Mathar, Apr 14 2011

Examples

			For n = 16 = 2^4 = the a(16) = 2^(A000203(4)) = 2^7 = 128. e-divisors of number 16 is 2, 4, 16, their product is 128.
		

Crossrefs

Programs

  • Magma
    [ &*[ d: d in Divisors(n) | forall(t) { p: p in P | v gt 0 and e mod v eq 0 where v is Valuation(d, p) where e is Valuation(n, p) } where P is PrimeDivisors(n) ]: n in [2..64] ]; // Klaus Brockhaus, May 26 2009
  • Mathematica
    f[p_, e_] := p^(DivisorSigma[1, e]/DivisorSigma[0, e]); a[n_] :=(Times @@ (f @@@ (fct = FactorInteger[n])))^(Times @@ DivisorSigma[0, Last /@ fct]); Array[a, 100] (* Amiram Eldar, Jun 03 2020 *)

Formula

a(1) = 1, a(p) = p, a(p*q) = p*q, a(p*q...*z) = pq...z, a(p^k) = p^(A000203(k)), for p, q, ..., z distinct primes and k > 1 an integer.
From Amiram Eldar, Jun 03 2020: (Start)
If n = Product_{i} p_i^e_i then a(n) = Product_{i} p_i^(sigma(e_i) * d_exp(n) / d(e_i)), where d_exp(n) = Product_{i} d(e_i) is the number of exponential divisors of n (A049419), d(e) and sigma(e) are the number of divisors (A000005) of e and their sum (A000203).
a(n) <= A007955(n) with equality if and only if n is noncomposite. (End)

Extensions

a(1) = 1 from N. J. A. Sloane, Mar 02 2009
a(60) corrected by Klaus Brockhaus, May 26 2009

A290480 Product of proper unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 1, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 1, 28, 1, 27000, 1, 1, 33, 34, 35, 36, 1, 38, 39, 40, 1, 74088, 1, 44, 45, 46, 1, 48, 1, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 216000, 1, 62, 63, 1, 65, 287496, 1, 68, 69, 343000, 1, 72, 1, 74, 75, 76, 77, 474552, 1, 80
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 03 2017

Keywords

Examples

			a(12) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 3 are proper unitary {1, 3, 4} and 1*3*4 = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> mul(d, d=select(x-> igcd(x, n/x)=1, divisors(n) minus {n})):
    seq(a(n), n=1..80);  # Alois P. Heinz, Aug 03 2017
  • Mathematica
    Table[Product[d, {d, Select[Divisors[n], GCD[#, n/#] == 1 &]}]/n, {n, 80}]
    Table[n^(2^(PrimeNu[n] - 1) - 1), {n, 80}]
  • PARI
    A290480(n) = if(1==n,n,n^(2^(omega(n)-1)-1)); \\ Antti Karttunen, Aug 06 2018
  • Python
    from sympy import divisors, gcd, prod
    def a(n): return prod(d for d in divisors(n) if gcd(d, n//d) == 1)//n
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 04 2017
    

Formula

a(n) = A061537(n)/n.
a(n) = n^(2^(omega(n)-1)-1), where omega() is the number of distinct primes dividing n (A001221).
a(n) = 1 if n is a prime power.

A062513 Product of unitary divisors of n is divided by n^(number of distinct prime factors).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 42, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 60, 1, 1, 1, 1, 1, 66, 1, 1, 1, 70, 1, 1, 1, 1, 1, 1, 1, 78, 1, 1, 1, 1, 1, 84, 1, 1, 1, 1, 1, 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jul 13 2001

Keywords

Examples

			n=210, with 4 p-divisors; all its 16 divisors are unitary; product=210^(16/2)=3782285936100000000, while 210^4=1944810000; a(210)=3782285936100000000/1944810000=1944810000.
		

Crossrefs

Programs

  • Mathematica
    Table[n^(2^(PrimeNu[n] - 1) - PrimeNu[n]), {n,1,50}] (* G. C. Greubel, May 20 2017 *)
  • PARI
    for(n=1,50, print1(round(n^(2^(omega(n) -1) - omega(n))), ", ")) \\ G. C. Greubel, May 20 2017

Formula

a(n) = A061537(n)/[n^A001221(n)].
a(n) = n^[(A034444(n)/2)-A001221(n)].

A064030 Product of unitary divisors of n!.

Original entry on oeis.org

1, 2, 36, 576, 207360000, 268738560000, 416336312719673760153600000000, 6984964247141514123629140377600000000, 300679807141675805997423113304381849600000000
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Examples

			n = 6 has 8 unitary divisors:{16,45,9,80,5,144,1,720}, a(6) = 720^4 = 268738560000
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (n!)^(2^(PrimePi[n]-1)); Array[a, 10] (* Amiram Eldar, Jul 16 2019 *)

Formula

a(n)=(n!)^(A034444(n!)/2)

A064031 Product of non-unitary divisors of n!.

Original entry on oeis.org

1, 1, 1, 576, 207360000, 26956124946896309452800000000000, 2841003716170671644367609186370356458508919205193278721884160000000000000000000000
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Examples

			n=6: 720 has 22 non-unitary divisors: a(6)=720^11=26956124946896309452800000000000
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (n!)^(DivisorSigma[0, n!]/2 - 2^(PrimePi[n]-1)); Array[a, 10] (* Amiram Eldar, Jul 16 2019 *)

Formula

a(n) = A061538(n!) = (n!)^(A048105(n!)/2) = (n!)^((A000005(n!)-A034444(n!))/2)

A290479 Product of nonprime squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 6, 1, 14, 15, 1, 1, 6, 1, 10, 21, 22, 1, 6, 1, 26, 1, 14, 1, 27000, 1, 1, 33, 34, 35, 6, 1, 38, 39, 10, 1, 74088, 1, 22, 15, 46, 1, 6, 1, 10, 51, 26, 1, 6, 55, 14, 57, 58, 1, 27000, 1, 62, 21, 1, 65, 287496, 1, 34, 69, 343000, 1, 6, 1, 74, 15, 38, 77, 474552, 1, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 03 2017

Keywords

Examples

			a(30) = 27000 because 30 has 8 divisors {1, 2, 3, 5, 6, 10, 15, 30} among which 5 are nonprime squarefree {1, 6, 10, 15, 30} and 1*6*10*15*30 = 27000.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[d, {d, Select[Divisors[n], !PrimeQ[#] && SquareFreeQ[#] &]}], {n, 80}]
    Table[Last[Select[Divisors[n], SquareFreeQ]]^(DivisorSigma[0, Last[Select[Divisors[n], SquareFreeQ]]]/2 - 1), {n, 80}]
  • PARI
    A290479(n) = if(1==n, n, my(r=factorback(factorint(n)[, 1])); (r^((numdiv(r)/2)-1))); \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = A078599(n)/A007947(n).
a(n) = rad(n)^(d(rad(n))/2-1), where d() is the number of divisors of n (A000005) and rad() is the squarefree kernel of n (A007947).
a(n) = 1 if n is a prime power.

A384763 Product of the Euler totients of the unitary divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 4, 6, 16, 10, 16, 12, 36, 64, 8, 16, 36, 18, 64, 144, 100, 22, 64, 20, 144, 18, 144, 28, 4096, 30, 16, 400, 256, 576, 144, 36, 324, 576, 256, 40, 20736, 42, 400, 576, 484, 46, 256, 42, 400, 1024, 576, 52, 324, 1600, 576, 1296, 784, 58, 65536
Offset: 1

Views

Author

Darío Clavijo, Jun 09 2025

Keywords

Comments

a(n) is the product of phi(d) over all unitary divisors d of n; i.e., those divisors satisfying gcd(d, n/d) = 1.
a(n) is upper bounded by A061537(n) (product of phi(d) over all divisors d of n).
The function is not multiplicative.
The sum of the totients over all unitary divisors d of n is A055653(n).

Examples

			For n = 6, a(6) = phi(1) * phi(2) * phi(3) * phi(6) = 1*1*2*2 = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[n]^(2^(PrimeNu[n] - 1)); Array[a, 100] (* Amiram Eldar, Jun 09 2025 *)
  • PARI
    a(n) = my(p=1); fordiv(n, d, if (gcd(d,n/d) == 1, p*=eulerphi(d))); p; \\ Michel Marcus, Jun 09 2025
  • Python
    from sympy import totient, divisors, gcd
    def a(n):
       prod = 1
       for d in divisors(n):
          if gcd(d, n//d) == 1:
              prod *= totient(d)
       return prod
    print([a(n) for n in range(1, 61)])
    

Formula

a(n) = Product_{d|n} phi(d) if gcd(n,floor(n/d)) = 1.
a(p) = p-1 for p prime.
a(p^k) = p^k-p^(k-1).
a(n) = phi(n)^(2^(omega(n)-1)) = A000010(n)^(A034444(n)/2). - Amiram Eldar, Jun 09 2025

A064032 Product of unitary divisors of binomial(n, floor(n/2)).

Original entry on oeis.org

1, 2, 3, 36, 100, 400, 1225, 24010000, 252047376, 4032758016, 2075562447064149770496, 531343986448422341246976, 75186222935463997063888896, 19247673071478783248355557376, 2940278105018015412903875390625, 566574142904620264536665169363475932852029446342410000000000000000
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n^(2^(PrimeNu[n]-1)); Table[f[Binomial[n, Floor[n/2]]], {n, 1, 20}] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    a(n) = apply(x -> x^(2^(omega(x)-1)), binomial(n, n\2)); \\ Amiram Eldar, Jul 22 2024

Formula

a(n) = A061537(A001405(n)). - Amiram Eldar, Jul 22 2024

Extensions

a(15)-a(16) from Amiram Eldar, Jul 22 2024

A064033 Product of non-unitary divisors of binomial(n, floor(n/2)) or a(n) = 1 if all divisors are unitary. See A046098.

Original entry on oeis.org

1, 1, 1, 1, 1, 20, 1, 1, 15876, 1016255020032, 1, 728933458176, 8670998958336, 19247673071478783248355557376, 1714723915100625, 752711194884611945703392100000000, 1, 31226235883841773375939805209600000000, 1, 1357651828905889565182743230460164655087616
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n^((DivisorSigma[0, n] - 2^PrimeNu[n]) / 2); Table[f[Binomial[n, Floor[n/2]]], {n, 1, 20}] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    a(n) = apply(x -> x^((numdiv(x) - 2^omega(x))/2), binomial(n, n\2)); \\ Amiram Eldar, Jul 22 2024

Formula

a(n) = A061538(A001405(n)).

Extensions

a(18)-a(20) from Amiram Eldar, Jul 22 2024
Showing 1-10 of 12 results. Next