A061549 Denominator of probability that there is no error when average of n numbers is computed, assuming errors of +1, -1 are possible and they each occur with p=1/4.
1, 8, 128, 1024, 32768, 262144, 4194304, 33554432, 2147483648, 17179869184, 274877906944, 2199023255552, 70368744177664, 562949953421312, 9007199254740992, 72057594037927936, 9223372036854775808, 73786976294838206464, 1180591620717411303424, 9444732965739290427392
Offset: 0
Examples
For n=1, the binomial(2*n-1/2, -1/2) yields the term 3/8. The denominator of this term is 8, which is the second term of the sequence.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..500
- Robert M. Kozelka, Grade Point Averages and the Central Limit Theorem, American Mathematical Monthly. Nov. 1979 (86:9) pp. 773-7.
- Eric Weisstein's World of Mathematics, Circle Line Picking
- Eric Weisstein's World of Mathematics, Gamma Function
Programs
-
Magma
A061549:= func< n | 2^(4*n-(&+Intseq(2*n, 2))) >; [A061549(n): n in [0..30]]; // G. C. Greubel, Oct 20 2024
-
Maple
seq(denom(binomial(2*n-1/2, -1/2)), n=0..20);
-
Mathematica
Table[Denominator[(4*n)!/(2^(4*n)*(2*n)!^2) ], {n, 0, 20}] (* Indranil Ghosh, Mar 11 2017 *)
-
PARI
for(n=0, 20, print1(denominator((4*n)!/(2^(4*n)*(2*n)!^2)),", ")) \\ Indranil Ghosh, Mar 11 2017
-
Python
import math f = math.factorial def A061549(n): return (2**(4*n)*f(2*n)**2) // math.gcd(f(4*n), (2**(4*n)*f(2*n)**2)) # Indranil Ghosh, Mar 11 2017
-
Sage
# uses[A000120] def a(n): return 1 << (4*n - A000120(n)) [a(n) for n in (0..19)] # Peter Luschny, Dec 02 2012
Formula
a(n) = denominator of binomial(2*n-1/2, -1/2).
a(n) are denominators of coefficients of 1/(sqrt(1+x)-sqrt(1-x)) power series. - Benoit Cloitre, Mar 12 2002
a(n) = 16^n/A001316(n). - Paul Barry, Jun 29 2006
a(n) = denom((4*n)!/(2^(4*n)*(2*n)!^2)). - Johannes W. Meijer, Jul 06 2009
Extensions
More terms from Asher Auel, May 20 2001
Comments