A061579 Reverse one number (0), then two numbers (2,1), then three (5,4,3), then four (9,8,7,6), etc.
0, 2, 1, 5, 4, 3, 9, 8, 7, 6, 14, 13, 12, 11, 10, 20, 19, 18, 17, 16, 15, 27, 26, 25, 24, 23, 22, 21, 35, 34, 33, 32, 31, 30, 29, 28, 44, 43, 42, 41, 40, 39, 38, 37, 36, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66
Offset: 0
Examples
Read as a triangle, the sequence is: 0 2 1 5 4 3 9 8 7 6 14 13 12 11 10 (...) As an infinite square matrix (cf. the "table" link, 2nd paragraph) it reads: 0 2 5 9 14 20 ... 1 4 8 13 19 22 ... 3 7 12 18 23 30 ... 6 11 17 24 31 39 ... (...)
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Madeline Brandt and Kåre Schou Gjaldbæk, Classification of Quadratic Packing Polynomials on Sectors of R^2, arXiv:2102.13578 [math.NT], 2021. See Figure 9 p. 17.
- Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024.
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Maple
T:= (n,k)-> n*(n+3)/2-k: seq(seq(T(n,k), k=0..n), n=0..12); # Alois P. Heinz, Feb 10 2023
-
Mathematica
Module[{nn=20},Reverse/@TakeList[Range[0,(nn(nn+1))/2],Range[nn]]]// Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jul 06 2018 *)
-
PARI
A061579_row(n)=vector(n+=1, j, n*(n+1)\2-j) A061579_upto(n)=concat([A061579_row(r)|r<-[0..sqrtint(2*n)]]) \\ yields approximately n terms: actual number differs by less than +- sqrt(n). - M. F. Hasler, Nov 09 2021
-
Python
from math import isqrt def A061579(n): return (r:=isqrt((n<<3)+1)-1>>1)*(r+2)-n # Chai Wah Wu, Feb 10 2023
Formula
Row (or antidiagonal) n = 0, 1, 2, ... contains the integers from A000217(n) to A000217(n+1)-1 in reverse order (for diagonals, "reversed" with respect to the canonical "falling" order, cf. A001477/table). - M. F. Hasler, Nov 09 2021
From Alois P. Heinz, Feb 10 2023: (Start)
T(n,k) = n*(n+3)/2 - k.
Sum_{k=0..n} k * T(n,k) = A002419(n).
Sum_{k=0..n} k^2 * T(n,k) = A119771(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A226725(n). (End)
Comments